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Motivation

« Longtime evolution
— Requirement changes

— A large number of versions

« Managing the costs and risks of evolution is a
challenging problem in the RE community.

Difficult to analyze and assess the proneness to
requirement changes across multiple versions




O

Find requirements that may change in the FUTURE!



Why Conduct Such a Study ?

« Being aware of volatile requirements

— Help to reduce the workload of
requirements volatility analysis

— Important to make robust designs that

could adapt to changes

— Help to identify potential changes as
early as possible.




Challenge

« Existing literatures

— Analyze possible future scenarios (Bush, D. et.al,
2003)

— Assess the volatility of the overall requirements
(Loconsole, A. et.al, 2005)

« Studies that can predict which requirements are
prone to change are rarely exploited.

— Predicting factors are difficult to comprehend and
construct.

ISCAS



Our Contribution

* Provide a set of metrics to measure the
evolution history of a requirement.

* A methodology to predict requirements
that are prone to change in the future.

« Conduct a case study in industrial settings,
based on our methodology.
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Methodology Overview - idea

Any

: : relationship? _
Historic Requirements

Requirements evolution in the
Evolution future
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Methodology Overview
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Document the History

* |dentify the evolution history

— Compare the requirements of two adjacent versions

— Build the evolution matrix

version
M\ 2 | 3| 4 | 5 7 | 8
1 0 0 2 1 -1 0
r 0 2 0 0 ] 0

(Where added = 2, modified = 1, deleted = -1, unchanged = 0,

number of historic versions = 8)

ISCAS



Metrics Definition - Intuition

Hypotheses The metric should
— Requirements that are 1. measure how
frequently changed in frequentlyT
historic versions are also requirement

likely to change in the \ changes.

future. 2. describe the length of
— Requirements that the time interval

belong to topics that are between two

prone to change in changes.

historic versions are also
prone to change in the
future.

—> 3. indicate the volatility

of the topic of a

requirement.
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Metrics Definition

Category Metric names Description
Content TopicVolatility | Average percentage of changed requirements over all
(TV) requirements in the same topic per version
Sum of the times of changes for a requirement over all historic
Frequency (F) :
versions
Change degree : , , :
Maximum number of versions that a requirement continuously
Sequence (S)
changed
Distance (D) | Sum of number of versions between two changes.
Length of | Lifecycle (LC) The number of versions between the version that a requirement

change time

i1s added and the latest version

Occurrence | The position of the center of changes towards the lifecycle of a
(00 requirement
;1| Refi)| n
TopicVolatility (r) = 53, Distance (r) = E (n-1)

] n
Frequency (r) = P Y. isChanged(r,i)

Sequence (r) = max(N(r,i)), (2<i< n)

i=2

Lifecycle (r) =n-VA +1

1 . Distance (r)
Lifecycle (r) Frequency (r)

Occurrence (r) =



Prediction Method - Logistic Regression

* Logistic Regression (LR) is a prediction
approach that can be used when the target
variable is a categorical variable with two
categories.

LR aims to determine whether there is some
form of functional dependency between the
explanatory variables and the dependent
variable.

Logit (P(change)) = w,*a;+ w,*o,+... ... tw, *a,+ w,

Where Logit(p) = log{p/(I-p)}, a; denotes the predictors selected in the
model, w,is the intercept.
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Training and Predicting

* Example - Requirements of the v; version

Req.ID TV F S LC OC | Change
1 0.24 0.25 0.33 5 2.4 0
2 0.44 0.5 0.33 4 1.5 1
3 0.36 0.75 0.18 5 1.1 1
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Training and Predicting

* Example - Requirements of the v; version

Req.ID TV F S LC OC | Change
1 0.24 0.25 0.33 5 2.4 0
2 0.44 0.5 0.33 4 1.5 1
3 0.36 0.75 0.18 5 1.1 1

/

[ The requirement actually change in v, ]
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Prediction Performance Measurement

Predicted
Not change change
Not change | TN = True Negative | FP = False Positive
change | FN = False Negative | TP = True Positive

Actual

Positive = TP+FP/TP+FN

+7TN+FP
Precision = TP/TP+FP
#Regs predicted to be
changed/Total number of
regs.
Recall = T7P/TP+FN O
All o
Requirements < g Positive = 33%
F-Measure = 2x«Precision-Recall/ -

Precision+ Recall OO

Indicate the workload of RV analysis
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Case Study

Data Sources
Selected Predictors
Building Models

Prediction Results

— Preliminary results

— Cutoff point selection
— Ultimate results
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Data Sources

* An industrial product
— 8 year on-going
— enterprise software process management
— 13 historic versions
— 4,044 requirements with 800 changes

#version 1 2 3 4 5 6 7 8 9 10 [ 11 | 12 | 13

Rfill‘l’f‘ese 2004 {2005 | 2006|2007 2007|2008 | 2009 | 2009|2010|2010 (2011|2011 [2012
186 | 189 | 195 | 221|276 | 310 | 308 | 334 | 355 | 389 | 394 | 426 | 461
3| 6 | 261605211138 |21(34] 5 |32] 35

# req.

10 | 22 1 60 | 43 | 57 | 26 | 28 | 36 | 77 | 20 | 28 | 32
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Datasets for training and testing
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Selected Predictors

« Stepwise regression

— iteratively deleting predictors from the full
model until no further improvement could

provide
# Regression 1 2 3 4 5 6 7 8 9
TopicVolality J J J J J
Frequency N, J J J J
Distance V
Lifecycle J J J J J
Occurrence v J v J J J J
Sequence J J J J
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Selected Predictors

8
; | Logit (P(change)) = w,*topicVolatility +
25 | e Medianl= 4.5 w,*frequence + w;*lifecycle +
3 g o w,* occurrence +w,
o | -
; where Logit(p) = log{p/(1-p)}, w,is the
E S N PP intercept.
Oocﬁj;\éé:«o&’ooé"’io&’e'qo'é@o
# Regression 1 2 3 4 5 6 7 8 9
TopicVolality J ~ J J J
Frequency J J V J J
Distance v
Lifecycle ~ ~ ~ J J
Occurrence ~ J J ~ i J J
Sequence J J J J
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Selected Predictors

# Regression 1 4 5 6 7 8 9
TopicVolality J J J J J
Frequency J J J J J
Distance J
Lifecycle J ~ J J J
Occurrence J J J J J J J
Sequence J J J J
8
7
6 - Logit (P(change)) = w,*topicVolatility +
L PSS ey s sy I w,*frequence + w;*lifecycle +
3 g w,* occurrence +w,
5 |
c1) where Logit(p) = log{p/(1-p)}, w,is the
s S i ISCAS




Building Models

Model Coefficients| TopicVolatility| Frequency Lifecycle | Occurrence

#Model Chi-square| Sig. B Sig. B Sig. B Sig. B Sig.
1 19.146 | 0.001 [ 7.008 [ 0.004 [2.317] 0.022 [1.070| 0.032 |-1.430]0.152*
2 4377 |0.357* | -0.466 |0.687%]1.024(0.083*(0.189]0.168*|-0.327(0.411*
3 23.579 | 0.000 | -0.570 [0.516*]|1.225] 0.010 {0.238| 0.001 [-0.737| 0.001
4 55.927 | 0.000 | -1.656 | 0.042 {1.338] 0.003 |0.155| 0.004 |-0.774| 0.000
5 98.167 | 0.000 | -1.898 | 0.017 {1.518] 0.000 |0.134| 0.003 |-0.683| 0.000
6 95.062 | 0.000 | -2.448 | 0.001 {1.463| 0.000 |0.101| 0.005 |-0.414| 0.000
7 67.416 | 0.000 | -2.060 | 0.004 {1.070| 0.003 |0.117| 0.000 |-0.207| 0.000
8 109.668 | 0.000 | -1.925] 0.007 [1.297| 0.000 |0.110( 0.000 [-0.270| 0.000
9 134.481 | 0.000 | -1.751] 0.012 [1.323| 0.000 |0.090( 0.000 [-0.268| 0.000
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* Find the optimal cutoff point

Prediction Results - Preliminary results
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F-measure

— Classify the probability of a requirement to be
changed or not
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Prediction Results - cutoff point selection

Constrain: positive < 50%

All Requirements J

Calculate recall, precision, positive, F-Measure
for a range of cutoff point {cj|1<i<n} where ¢; <Cj.1

A

Find c; where F-Measure (cy)
= Max(F-Measure(c))), 1<i<n

Y
If Positive(cr) < UpperLimit

No

Find c, where Positive (c,) <
UpperLimit, and Positive (cp.1) >
UpperLimit, 1<p<n

v

90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
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0.00%

Ginal cutoff point = CD Ginal cutoff point = 9

000000

Model 6 _

Positive(C;) = 52.13%

Positive(0.1) = 40.33%

0.03 004 005 01 015 0.2 025 0.3
Cutoff point = 0.1

Recall ~ — —.— Positive
..................... Precision F—measure
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Prediction Results - uitimate results

70.00%

60.00% /R\ Max Min Mean Std. Dev.
A/
50.00%
N

40.00% -

Positive 40.33% 5.65% | 24.05% | 0.114

—o—Recall N ——

—B-Precisi
recision Recall  59.38% 32.14%| 44.33%| 0.095

Positive —

30.00% -

20.00%

——F-Measure  E—
10.00% N Precision 64.29% 13.48% 27.95%  0.170

—

0.00%
F-Measure 42.86% 20.69% 30.72%  0.078

* Retrieve nearly half of future requirement changes
with the cost of 2 % effort on analysis in average.
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Conclusion

— A novel solution helps to downsize the workload
of requirements volatility analysis by
recommending a converging subset of change

-prone requirements.

— The proposed method can achieve a tradeoff
between analysis costs and evolution risks to
help practitioners manage the requirements
evolution.

— Our study could contribute to quantitative
requirements management for companies that

devote to high maturity process improvement.
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Questions?

: Metrics Definition
Methodology Overview
— * Considerations
— = = — The metric should indicate the volatility of the topicthata requirement belongs to.
[ "= [—' "= — The metric should measure how frequently 2 requirement changes.
e [=l ------------ — The metric should describe the length of the time interval between twochanges.
=
- [E Category |Metricnames Description
p mdli);?o;mmel ) ¥ ¥ ¥ ¥ Content TopicVolality | Averagap ez of changad i ts ovarall
Tepevciaity — —§ il 1T = 1 = av qui tsin the picpar varsion
o | = 7 ——
: Froquency | Y Y & Y on Fraquency (F) %m.of tha times ofchangas for a raquiremant ovarall historic
Sequence - — angs varsions
e | = = = dsgres Maximum number of varsions that a raquirement contiruously
| s é' B E! - = Saquenca(S) chanesd
| — = - rersi
RN , D ) [ oo
Train | | | | Measure Recal Lsngthof . The number of varsions betweenths versionthata
models Erediction performance iyl changs tims Lifseyele LO raquirement is addad andthe latast version
Occurrence | Theratio of the differance of canter ofchanss to the latest
(0C) version to thelifecvele for a requirsment

|] I5CAs ][ 15Cas

Prediction Results - Preliminaryresults Prediction Results - Ultimate results

Model 3
ez 70.00%
— £0.00% Max Min  Mesn Std Dev.
= so0m Recall 35938% 3214% 4433% 0095
BooK 40.00% ——Recall
‘::': 30.00% e-Preclon | precision 6420% 1348% 2795% 0170
o oo oromo: 20.00% :::I::U,'
— 10.00% Positive 4033% 565% 2405% 0114
0.00%
1 3 4 s 6 7 8 9 F-Meazure 4286% 2069% 3072% 0078
Model
* There are 24.05% requirements predicted to change in average.

* The average precision for predicted possible changing
requirementsis 27.95%.

* Prediction models can retrieve 44.33% actual changed
requirements in average.
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