
A Goal Model Elaboration for Localizing
Changes in Software Evolution

Hiroyuki Nakagawa, Akihiko Ohsuga, Shinichi Honiden
RE 2013, July 18th, 2013, Rio de Janeiro

Background: Software evolution

3

W→W’ R→R’ S→S’

 Software evolution: activity for adapting to requirements
changes
 Play central role in overall software lifecycle
 Recent topics: continuous software evolution

 Software product lines [Northrop01]
 Continuous delivery [Humble10]

 Requirements and specifications [Zave, Jackson97]
 W = world, R = requirements, S = specifications

W, S├ R

 (Continuous) software evolution:

… W, S├ R  W’, S├ RW’, S├ R’W’, S’├R’ …

[REQ] Keep cost(SS’) low under continuous evolution

 W: states of world
 R: goal model description
 S: system architecture

R

Example: cleaning robot evolution

4

S

W
Dust items {((x1, y1), empty

can), ((x2, y2),
litter), ((x3, y3),
house moss)}

Position of robot (0, 1800)

W in this study

5

 W: cleaning robot and dust items (in initial dev.)

Robot

Dust item

World has changed (W W’)

6

 W’: (charge) station is installed

Station

Robot

Dust item

Wc = common(W’, W), Wd = diff(W’, W)

World has changed (W’ W’’)

7

 W’’: dustbin is installed

Station

Robot

Dust item
Dustbin

W’c = common(W’’, W’), W’d = diff(W’’, W’)

 R: Initial goal model for a cleaning robot

R: requirements

8

R

R’

 R for battery maintenance is added

R’: R changes to R’ (R  R’)

9

Rc

Rd

Rc = common(R’, R), Rd = diff(R’, R)

Goals for battery maintenance

R’’

 R for load management is added

R’’: R’ changes to R’’ (R’  R’’)

10

R’c

R’d

R’c = common(R’’, R’), R’d = diff(R’’, R’)

Goals for load management

 S: Architectural configuration for cleaning dust items

S: specifications

11

S

Picking up

Vacuum

CleaningApproaching
dust

Dust
discovery

Move to dust

Controller

ComponentProvided
service port

Required
service port

 S’: Behaviors for battery maintenance are added
S’

Controller

S’: specifications should be changed (S  S’)
In a centralized control manner

12

Picking up

Vacuum

CleaningApproaching
dust

Dust
discovery

Move to dust

Component

ChargingApproaching
station

Station
discovery

Move to
station

Sc

Sd
Sd mixes with Sc
in Controller

Sc = common(S’, S), Sd = diff(S’, S) Provided
service port

Required
service port

Controller

 S’’: Behaviors for load management are added

S’’: specifications should be changed (S’  S’’)
In a centralized control manner

13

S’’

Dust unload
Approaching

dustbin
Dustbin

discovery

Move to
dustbin

ChargingApproaching
station

Station
discovery

Move to
station

Picking up

Vacuum

CleaningApproaching
dust

Dust
discovery

Move to dust

Controller

S’d
S’c

S’c = common(S’’, S’), S’d = diff(S’’, S’)

Controller becomes more complicated

ComponentProvided
service port

Required
service port

 S’: Behaviors for battery maintenance are added
S’

S’: specifications should be changed (S  S’)
In a distributed control manner

14

Orientation
Target

position

Picking up

Vacuum

Cleaning
Approaching

dust

Dust
discovery

Move to dust

Global
variable

ChargingApproaching
station

Station
discovery

Move to
station

Cause mutual exclusion
Modify existing specifications
 Sd becomes scattered

Sc

Sd

Sd

Sd

ComponentProvided
service port

Required
service port

 S’’: Behaviors for load management are added

S’’: specifications should be changed (S’  S’’)
In a distributed control manner

15

S’’

Orientation Target
position

Dust unload
Approaching

dustbin
Dustbin

discovery

Move to
dustbin

Battery
management

Charging

Approaching
station

Station
discovery

Move to
station

Picking up

Vacuum

Cleaning
Approaching

dust

Dust
discovery

Move to dust

Global
variable

S’d
S’c

S’d

S’d

Robot arm

S’d

S’d has been more scattered ...
S’d

S’d

ComponentProvided
service port

Required
service port

 Clear separation of Sc and Sd
is important!

 S’: Behaviors for battery maintenance are added
S’

Desirable S’

16

Orientation

Target
position

Picking up

VacuumCleaning

Approaching
Object

Object
discovery

Move to
object

Global
variableComponent

Battery
management

Battery
observation

Charging Approaching
station

Approaching
dust

Point: Clear separation of Sc and Sd

Observation
For cleaningSc

Sd

Sc

 S’’: Behaviors for load management are added
S’

Desirable S’’

17

Orientation

Target
position

Picking up

VacuumCleaningApproaching
Object

Object
discovery

Move to
object

Global
variableComponent

Battery
management

Battery
observation

Charging Approaching
station

Approaching
dust

Observation
For cleaning

Load
management

Load
observation

Approaching
dustbin Dust unload

Object position
observation

Object handling
Arm

managementArm module

Point: Clear separation of S’c and S’d

S’dS’c

S’d

S’c S’c

How do we construct desirable S’ and S’’?

18

 Difficulty: Less traceability between R and S
 S does not appear in the goal model

 Approach:
 Design S in R
 Clearly separate Sc and Sd

Goal model System architecture
R Desirable S

?

 Introduce behavioral model for S
 Independent behavioral modules

Control loop

19

 Control loop [Shaw 95] [Dobson 06] :
 Behavioral model that focuses on process control

 Summarized as Collect, Analyze, Decide, Act
 Process variables: Input, controlled, and manipulated variables

Decide

Act

Collect

Analyze Control loop

[Shaw 95] Mary Shaw, "Beyond Objects: A Software Design Paradigm Based on Process Control", ACM SIGSOFT
Software Engineering Notes Homepage archive Volume 20 Issue 1, Jan. 1995
[Dobson 06] Dobson et. al, A survey of autonomic communications”, ACM Transactions on Autonomous and
Adaptive Systems, Vol. 1, Issue 2, 2006.

Our approach to constructing desirable S’ and S’’

20

 Key points:
 Design S based on control loops
 Introduction of an elaboration process

 Constructing control loops according to a description pattern

Control loops
(= highly independent modules)

Goal model Elaborated goal model

Elaboration
process

System architecture

Pattern based extraction
R SR S

Elaboration process

21

1. Add entities

2. Identify prime goals

4. Check conflicts

Entities

3. Construct control loops
3.1 Define AD type goals
3.2 Define Collect type goals
3.3 Define Act type goals

Process
variables

Control loops

Prime goals

Added concepts
Initial goal

model

Elaborated goal model

Steps

Goal model before elaboration

22

Goal model after elaboration

23

Analyze &
Decide Analyze & Decide Analyze & Decide

Collect
Collect

Collect

Act Act
Act Act

Act

Control loop
(= highly independent modules)

Control loop for
battery maintenance

Control loop for
approaching objectControl loop for cleaning

Elaboration process

24

1. Add entities

2. Identify prime goals

4. Check conflicts

Entities

3. Construct control loops
3.1 Define AD type goals
3.2 Define Collect type goals
3.3 Define Act type goals

Process
variables

Control loops

Prime goals

Added concepts
Initial goal

model

Elaborated goal model

Steps

Goal model for cleaning robot
1. Add entities

25

Entity
- Add relevant entities (objects) with concerns links

Concerns links: relation between goals and entities

2. Identify prime goals

26

 Activities: determine prime goals by following
guidelines
 Prime goals: key goals for constructing highly

independent modules
 Individual control loops are assigned to prime goals

 To independently design components achieving prime goals
 To localize accesses of individual entities

 Guidelines: a goal gi that satisfies one of the following
rules is defined as a prime goal candidate

 Rule 1) More than one child goal of gi has concerns links to
the same entities

 Rule 2) Other goals depend on gi through Uses labels

Goal model for cleaning robot
2. Identify prime goals (Extract candidates)

27

- Identify prime goals by applying Rule1
Rule1) More than one child goal of gi has concerns
links to the same entities

Rule 1Rule 1

Prime goal (candidate)

Reason

Elaboration process

28

1. Add entities

2. Identify prime goals

4. Check conflicts

Entities

3. Construct control loops
3.1 Define AD type goals
3.2 Define Collect type goals
3.3 Define Act type goals

Process
variables

Control loops

Prime goals

Added concepts
Initial goal

model

Elaborated goal model

Steps

Control loop pattern

29

<<goal>>

Analyze & Decide (AD)

<<goal>>
Collect

1..* 1..*

<<Entity>>
Input variable

<<Entity>>
Manipulated variable

<<Entity>>
Controlled variable

Concerns

1..*

Concerns Concerns

0..* 0..*

Act

Terminal subgoals Terminal subgoals

0..*

subgoal

0..*

subgoal

Prime goal

:Monitor :Manipulate :Control

<<goal>>
Intermediate subgoals

<<goal>>

<<goal>>

<<goal>>

subgoal

0..*Data collection for
analyzing current
situation

Determine if prime goal achieved
by analyzing current situation
and deciding on suitable action

State transition made
by executing actions

Goal model for cleaning robot
3. Control loop construction

30

• Identify Act type goals
• Identify controlled and manipulated
- Add them if not described in the goal model

Collect

Collect Collect

Collect

AD AD

Act

Act

Act

Act

：Control

：Control

：Control

：Manipulate

：Manipulate：Control
：Manipulate

Prime goal (AD type goal)

Manipulated variable
Controlled variable

:Monitor
:Monitor

:Monitor

:Monitor

:Monitor

Input variables

Elaboration process

31

1. Add entities

2. Identify prime goals

4. Check conflicts

Entities

3. Construct control loops
3.1 Define AD type goals
3.2 Define Collect type goals
3.3 Define Act type goals

Process
variables

Control loops

Prime goals

Added concepts
Initial goal

model

Elaborated goal model

Steps

Conflict detection

32

 Embedding multiple control loops may cause conflicts
 Check concerns links to manipulated variables from

multiple control loops

 Solve conflicts by modifying goal model structure

Entity

Concerns Concerns

…

…

…

…

Prime goal A Prime goal B

：Manipulate：Manipulate Conflict

Solution

33

 Solution 1: Link aggregation
 Aggregate concerns links into a new

prime goal
 Uses: dependencies on other prime

goal
 Goal A needs prime goal B to achieve it
 Label “Uses B” on goal A

 Solution 2: Goal aggregation
 Aggregate conflicting prime goals

into a tree
 By adding a new root goal, which

becomes a new prime goal

Goal model for cleaning robot
4. Conflict checking

34

- Check conflicts
 Detect conflict on entity “Migration direction”

AD AD

：Manipulate
：Manipulate

：Manipulate

Conflict

AD type goal

Control loop

Manipulated variable
 Apply Solution 1 (Link aggregation)

Goal model for cleaning robot
4. Conflict checking (Resolve conflicts)

35

AD type goal

- Generate a new prime goal for approaching
object according to Solution 1 (Link aggregation)

Control loop

Manipulated variable

AD AD AD

：Manipulate

：Manipulate

Uses Object
reachable

Uses Object
reachable

Elaborated goal model for cleaning robot

36

Uses Object
reachable Uses Object

reachable

Analyze &
Decide Analyze & Decide Analyze & Decide

Collect
Collect

Collect

Act Act
Act Act

Act

Control loop
for battery maintenance

Control loop
for approaching object

Control loop
for cleaning

S corresponding to elaborated goal model

37

Migration
direction

Object
position

Dust
picked up

Dust
vacuumed

Dust
disposed of

Object
reachable

Object
found

Got close to
object

Process
variableComponent

Battery
maintained

Battery level
observed

Battery
charged

Station
reachable

Dust
reachable

Dust
observed

Act

Collect

AD Act

AD
Collect

Act

Act

Act

Act

Collect

AD

Dust
appearance

Cleaning
result

Cleaning
method

Battery
level

Control loop for battery maintenance

Control loop for approaching object Control loop for cleaning

[Nakagawa11] H. Nakagawa, A. Ohsuga, S.
Honiden, “gocc: A configuration compiler for
self-adaptive systems using goal-oriented
requirements description”, Proc. of
SEAMS2011, ACM, 2011.

Experiment: Evolution of cleaning robot
[Outline]

38

 Continuously evolve cleaning robots in a simulator
 Six functions are incrementally added

 Battery maintenance, additional cleaning methods, load
management, ...

 Three robots
 Baseline (centralized): robot with a centralized control
 Baseline (distributed): robot composed of distributed components
 Proposed style: robot according to extracted control loops

 Compare three robots by measuring
the increase in code complexity
 CBO (Coupling Between Objects)

 One of CK metrics [Chidamber94]
 Represents coupling complexity

 Cyclomatic complexity [McCabe76]
 Represents complexity of control flow

Experiment: Evolution of cleaning robot
[Results] CBO

39

Max

Most evolution requires
associations between new classes
and centralized controller

Individually components have to
directly couple with global variables

CBO: represents coupling complexity

Experiment: Evolution of cleaning robot
[Results] Cyclomatic complexity

40

Average

Evolution adds condition statements
for recognizing new world into the
centralized controller

Baseline (distributed) rapidly
complicate than proposed method

Cyclomatic complexity: represents
complexity of control flow

 Prevent the code complexity from increasing
by localizing the impact of changes

Discussion: Localizing changes

41

 Impact analysis:
 Elaboration makes separation of Sc and Sd by control loop block
 localizing the impact of changes into relevant control loops

 New prime goals: control loops addition
 Changes of descendant goals of prime goals: behavioral changes of

their control loops
 Help to analyze the impact of changes

 Change implementation:
 Control loop modeling prevents code complexity from increasing

 Modules with higher modularity have lower
associated maintenance effort [Bhattacharya12]

 Adding control loops instead of modifying
existing code
 Prevent evolution cost from increasing

[Bhattacharya12] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-based analysis and prediction
for software evolution”, ICSE 2012, IEEE, 2012.

Conclusions

42

 To deal with continuous software evolution ...
 Introduce a goal model elaboration process
 Extract control loops from goal model as highly

independent modules
 Separate Sc and Sd by control loop block
 Clear separation makes evolution cost lower

Control loops
(= highly independent modules)

Goal model Elaborated goal model

Elaboration
process

System architecture

