On Requirements
Verification for Model
Refinements

Paola Spoletini

Universita degli Studi dell’Insubria

Carlo Ghezzi Politecnico di Milano
Claudio Menghi Politecnico di Milano
Amir Molzam Sharifloo Politecnico di Milano

Motivation

* Modern software systems are often developed in an
agile fashion

* At each step the model of the system b i qudatrin e
is incomplete ... | f \

* Perform verification at each iteration k J\

* Wait until the end to verify the system

* Make assumptions on the missing parts before verifying

How to perform verification
... efficiently and automatically
3 7 at each iteration?

AGaVE: AGile Verification
Environment

Verification technique

* to check whether a specification satisfies a given
property

* to (automatically) generate sub-properties that the
missing components have to respect

Approach overview

QOriginal property P

EG(p1 = ¢2)

Deve;oper

<F

& . Level 1
\/ () \i‘ ' L
¥ @
— J
N Y
: : Derived properties
Derived iropertles Wl & Level 2
odhe O' AO Ly ‘/) /
-l @O0 | [_____> C _______ D \
=y Lo NO
u O-OrO

Statecharts

e Statecharts extend finite state machines with
* Hierarchy

* Concurrency

* Formally, S = {QlJq,.(a¢} St, p, ©

Statecharts

e Statecharts extend finite state machines with

e Hierarchy

* Concurrency

* Formally, S =4Q, q,, g, St@ T

P D%

eqlcqllaq ‘ I eo[Co]las

p S (Q-{a,9:}) x {AND,OR} x #(St)

—_—

Statecharts

e Statecharts extend finite state machines with
* Hierarchy

* Concurrency

* Formally, S =<Q, q,, g;, St, p,/T)

T:(Q-{q})xExC(I)>(Q-{qg,})xAl(l)

Statecharts

e Statecharts extend finite state machines with
* Hierarchy

* Concurrency

* Formally, S =<Q, q,, g;, St, p, T

‘ eqlcqllay ‘ | eo[collas

—

Sensor B

Sensor C

Example Ceo | -
Train h ’ ._lGate

t:

3

ea[crossing]/

travelling
—-Ccrossing

1

e1[traveling]/

approaching
-traveling

[approaching]/
-open

[traveling]/
open

Y
)

)

e [approaching

)

-open]/ .
crOSﬁ/ ts' t:
73pPro h 0/ g
t:
" askPermit e4[]/
e [/ ; (
failure !
t:
* Timeout
. [.]/ 7 -permit]/
[510 } - allure []/
askPermit S

OF
[1/

alarm

-

Path-qCTL

e qCTL = qualitative CTL
* Path-qCTL = gCTL + operator on a finite path
* Its syntax is defined as

> ¢A¢|~¢|E¢u¢|EG¢|p

* E,G¢ = “There exists a path that reaches the final state
in which ¢ always holds”

* Example
* ¢ =-E(-permit U crossing)

The Verification Algorithm

Ry Wi
) O ¢ - Result
"

\Qﬂodehcﬂécleng
Translate Statecharts in ILTS Y lDerived

Properties

De%per :> CHECK (M' @’)<:|
-

Update Results

- J

CHECK (M, ¢)

ILTS (with initial and final states)

* LTS on an alphabet AP =<Q, T, L)
* Q = finite set of states CJD—'Q
T ©£Q x Q= transition relation
* L: Q - »(AP) = labeling function @
* Incomplete LTS on an alphabet AP =<Q, T, L)

e Qis partitioned in regular and transparent states
* Transparent states represent components

W0OQ | /g)“
2%

L0120y 58

A0SR0
oo

From Statecharts to ILTS

Translate Statecharts in ILTS

1. Preprocess transparent states

From a state to a transition

From Statecharts to ILTS

Translate Statecharts in ILTS

Preprocess transparent states
2. Eliminate AND-states

e states = cartesian product of the states of the
sub-Statecharts

* Transitions = all possible interleaving steps

From Statecharts to ILTS

Translate Statecharts in ILTS

\

1. Preprocess transparent states
2. Eliminate AND-states

Preprocessing /

3. Build the ILTS structure

Statechart transitions become ILTS states

From Statecharts to ILTS
/1. Preprocess transparent states b

2. Eliminate AND-states
_ Preprocessing /

Translate Statecharts in ILTS

3. Build the ILTS structure

Label the ILTS

* Event = label
* Values assigned by actions = label
 Unchanged values are propagated

e Split of states
* Assumption of no-side effect for transparent states

Example

-

t .

- t:
‘. Wl [/ d
" askPermit |2 ElI/
e[l/ -) perrru{
failure 4 4 j\
t: '°
” Timeout 3
[,]/ - -permit]/
[S] —failure| 1 1/
' askPermit ¥[

=permit,
failure

=permit,
timeout

=permit,
failure,
alarm

=failure

The Verification Algorithm

— TN
4 /_,_J L
4 / 7N \
q w.)
ILT I 8
— < >
9
Translate Statecharts in ILTS) Model-Check ILTS

N /

lProperties

D

EEEEEE a

>

o

eveloper :> CHECK (M '@’)<:| .

Update Results Q

~

/

CHECK (M, ¢)

//)
/ — \
| ()

Veritying ILTS

Model-Check ILTS

* Formulae are processed by navigating their
parsing tree from the leaves to the root

* Labeling procedure as in explicit model checking

* Ep, U0, E%)GCLIJ)%I)
1YP,

The Verification Algorithm

4 VRN N

2L

e’ r
) =/ 4 - Result

Sy

-

@)
De%per:> CHECK (M’ ,¢") <:| ¢ @'

|

Update Results

\Model- Check ILTS

J

CHECK (M, ¢)

N

Experimental Results

1000000

100000

10000

1000

100

Verification time [ms]

1

o

1

Verification space
[Number of states]

100

0

1 2 3 4 5 6

1

-
2

Statechart level

5 6

3 4
Statechart level

AGAVE

B [ntegrative
Approach

AGAVE

¥ Integrative
Approach

* Prototype verification
tool

e Java standalone
application

* Experiments

 Railway crossing case
study

* Traditional approaches
check the whole system
at each step

e AGaVE checks the new
components against the
new constraints

Conclusion

* AGaVE = AGile Verification Environment
* Verification technique dependent on the modeling
language
* Independent methodology
* Benefits in verifying
* Incomplete specifications
* Analysis of different alternatives
* Adaptive systems
* Hierarchical specifications

* Composite states can be considered as transparent states

On-going and Future Work

* Optimizing the current verification algorithm
* Optimize the AND-state management
* Efficiently remove the no-side effect assumption

* Extending the verification and the properties
* Consider also operators AX and EX

e Deal with metric operators
* Add timed transitions

