A Mode-Based Pattern for Feature Requirements,
and a Generic Feature Interface

David Dietrich
Joanne M. Atlee

David R. Cheriton School of Computer Science

W' necsis

UNIVERSITY OF

WATERLOO

Problem:
State-machine models are hard to write

FAIL

ENABLE

4 UNAVAIL i
TRANSITION

.
DRV STR
. OVRD

=2 o

7/22/13

Potential for a Requirements Pattern

Power Up
Different vocabulary
for similar behaviour DISABLE
VadN

UNAVAIL
TRANSITION

Expires with
Q

Off whie Auto Brakirg
Vehice
Anoad Oriver Brakes OR
Accslerates OR Presses.
Cancel Switch OR Time
Expires with On/Off
Switch On

ACC
Transition

Potential for a Requirements Pattern

Power Up

7 ACCIFCA
Disabled DISABLE

ONOff Switch On

ENABLE

Oonof
Switch Off
ACC

onort Standby
Swich Off Disabled

Braking NOT Active

Expires with
Q

Oriver Brakes OR
Accelerates OR Presses
Cancel Switch OR Time
Expires with On/Off

Switch On

ACC
Transition

States that affect
the vehicle’s environment 4

7/22/13

7/22/13

Potential for a Requirements Pattern

Similar enabling ae ™\
o processes

' DISAI

N

FAIL
TRANSITION

ENABLE

ACC
Standby
Disabled

)

UNAVAIL

TRANSITION ' ENGA
ABORT ‘

DRV STR

OVRD

<>

ON/OH Switched
Off OR Time
Expires with
QA/OA Switch Off

Thratie Override NOT
Active with Disergagement
Critera not Involving Driver
“Acticn OR OO# Switch
Off whie Auto Brakirg

Oriver Brakes OR

Accslerates OR Presses

Cancel Switch OR Time
Expires with On/Off

Research Timeline

. Pattern Interface .
Observations . . Evaluation
Design Design

| Start

Requirements Patterns

Domain-specific patterns

— The majority of patterns are domain specific [RePa ‘11, ‘12, '13]
Patterns for easing requirements elicitation

— Cliches [Rubenstein and Waters, TSE ‘91]

— Domain models [Sutcliffe and Maiden, TSE ‘98]
Feature interfaces

— Everything about a feature is revealed [Jackson and Zave, TSE
‘98]

— Features interact solely through a shared context [Apel et. al.,
ICMT ‘09]

— Aspect-aware interfaces provide an interface for aspect modules
[Aldrich, ECOOP '05]

THE PATTERN

7/22/13

Pattern

describes a feature’s
failure requirements

-
-
~
~

describes a feature’s non-essential
requirements (e.g., the feature’s
enabling process)

Pattern

describes a feature’s essential
requirements (e.g., the feature
affecting the environment)

10

7/22/13

describes a feature’s
failure requirements

~
-

~
~

describes a feature’s non-essential

requirements (e.g., the feature’s
enabling process)

Pattern

Green

« Feature affects its
environment

Yellow

« Environment can affect
feature (e.g., user can
change feature settings)
Red

« Feature monitors
environment

describes a feature’s essential \
requirements (e.g., the feature
affecting the environment)

11

y 1 4

/
Environment

Enabled ’

y 1 ¢
!

User
Enabled

Inactive

Monitoring
A

Deactivating

A

y

Controlling

A Pattern for Structuring the Behavioural 5
Requirements of Features of an Embedded System [RePa ‘13]

7/22/13

1.

Inactive State Extensions

Ordered Enabling Unordered Enabling

. Environment User
Disabled [Disabled J [Disabled J

A N

Environment \ 4 A\ 4
Enabled Environment User
- Enabled Enabled
User To Active AN <~

e
Enabled
\—) To Active

Differentiate between user enabling actions and environment
enabling conditions

13

Inactive State Extensions

Ordered Enabling Unordered Enabling

. Environment User
Disabled [Disabled J [Disabled J

A N

Environment \ 4 A\ 4
Enabled Environment User
- Enabled Enabled
User To Active AN <~

e
Enabled
\—) To Active

Differentiate between user enabling actions and environment
enabling conditions

Distinguish between ordered enabling processes and processes
where ordering does not matter

14

7/22/13

Example 1

Inactive

while either Auto
Braking NOT Active
or No Vehicle Ahead

Set or Resume.
initiated by Driver

Driver Brakes OR
Accelerates OR Presses
Cancel Switch OR Time
Expires with On/Off
Switch On

Example 2

y

Inactive

\

DISABLE

ENABLE

7/22/13

THE INTERFACE

Public
Failed

Inactive Active

N
S

* Most inter-feature references are to the
high-level behaviour modes

Private * The pattern separates a feature’s behaviour
Environment . . .
model into public and private components
- ¢ Thus, the feature interface is generic to all
features when the pattern is widely used

User
Enabled

7/22/13

Example

Existing Text: [FeatureX_Fail] flag shall be set to true when FeatureY is in fail state...

in(FeatureY.Failed) in(FeatureY.Failed)

Feature X FeatureY

19

EVALUATION

20

7/22/13

10

Case Study Methodology

* The pattern was designed by examining five production-grade
features

* Two rounds of verification and refinement were performed
using an additional 16 features

21

Case Study

* Examined the complete requirements of features to
determine if they could be modelled using the pattern

* Also looked at inter-feature references and determined if they
reference only public information or private information

21
Z features can be modelled using the pattern

50
; inter-feature references use the public interface

22

7/22/13

11

User Study
(not reported in paper)

Performed a user study with 12 participants with varying levels
of experience with state-machine modelling

* Three participant groups: Control (C), Pattern (P), Pattern
+Interface (PI)

* Provided each participant with a tutorial

* Asked to answer questions about a provided model with
pattern (for P and PI groups) or without pattern (C group)

* Asked to create a model from a textual description

23

User Study: Reviewing Models

Participants with
correct answers
(#/4)
Model Comprehension Questions PI|P|C
List all environmental conditions to activate feature 0 210
List all user actions to activate feature 4 4 |1
List all references to other features 4 311
List all states in which the feature affects environment | 4 3|2
Describe the failure process 4 313
What is the name of the initial state 4 313
Average 3313 | 1.7

24

7/22/13

12

User Study: Specifying Models

Correctness of written model: — -
Participants with correct

behaviour (#/4)

Model behaviour PI | P

Q

References related feature correctly
Includes all enabling conditions

Correct inactive behaviour

Correct deactivation conditions

Correct deactivation behaviour

Correct controlling/monitoring behaviour
Correct failing sequence

Colb o b o A W

O W W AR O
0NN O NN

Average

Conclusion

* We propose a pattern for modelling state-machine-based
feature requirements and an interface to features

* The pattern seems to provide several benefits:

General enough to be applied to many features

The interface provides a generic method to reference features

The pattern and interface improve the readability of state-
machine models

The pattern and interface improve the correctness of written
models

26

7/22/13

13

References

[1] H. Reubenstein and R. Waters, “The requirements apprentice:
automated assistance for requirements acquisition,” IEEE Transactions
on Software Engineering, vol. 17, no. 3, pp. 226-240, March 1991.

[2] A. Sutcliffe and N. Maiden, “The domain theory for requirements
engineering,” IEEE Transactions on Software Engineering, vol. 24, no. 3,
pp. 174 —196, March 1998.

[3] M. Jackson and P. Zave, “Distributed feature composition: A virtual
architecture for telecommunications services,” IEEE Transactions on
Software Engineering, vol. 24, no. 10, pp. 831-847, Oct. 1998.

[4] S. Apel, F. Janda, S. Trujillo, and C. Kastner, “Model superimposition
in software product lines,” in Proceedings of the 2nd International

Conference on Theory and Practice of Model Transformations
(ICMT’09), 2009, pp. 4-19.

27

Evaluation: Threats to Validity

* (Case Study
— All features were gathered from one domain in one company
— The pattern creator performed the case study

* User Study
— Only 12 participants, split into 3 groups

28

7/22/13

14

