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•  Modern	  soAware	  systems	  are	  oAen	  developed	  in	  an	  
agile	  fashion	  
•  At	  each	  step	  the	  model	  of	  the	  system	  
is	  incomplete	  …	  
•  Perform	  verifica9on	  at	  each	  itera9on	  
•  Wait	  un9l	  the	  end	  to	  verify	  the	  system	  
•  Make	  assump9ons	  on	  the	  missing	  parts	  before	  verifying 	  	  
	  

	  How	  to	  perform	  verifica9on	  
efficiently	  and	  automa-cally	  	  
at	  each	  itera9on?	  

	  

Motivation	  



Idea	  
	  

AGaVE:	  AGile	  Verifica9on	  	  
Environment	  
	  
Verifica9on	  technique	  	  
•  to	  check	  whether	  a	  specifica9on	  sa9sfies	  a	  given	  
property	  
•  to	  (automa9cally)	  generate	  sub-‐proper9es	  that	  the	  
missing	  components	  have	  to	  respect	  
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II. AN OVERVIEW ON THE APPROACH

In general, the design phase consists in a series of subse-
quent refinement steps, that allows the designer to model the
system starting from an high level of abstraction, in which a
general structure of the model is given, to the a level of
detail, that describes the behavior of all the components
of the system. If a verification technique is used during
the design, this incremental approach requires to verify the
system every time a new component is specified or to apply
an assume-guarantee method [?], that need the designer
to add assumption to its system. Both the approach are
inconvenient: the first can be extremely expensive in terms
of time and the second can be unfeasible in this context
since the different components are not know at each level
of refinement.

To cope with these limitations, we propose XXX, a
methodology for supporting the design phase of complex
systems, by providing an analysis method that can be applied
incrementally while the model is built.

EG('1 ) '2)
Outline
• Incremental modeling consists in specifying systems

refining them with subsequent steps of refinement (at
each step the introduced components are unknown and
not detailed)

• Our proposal is an approach to incremental modeling
and verifying systems. The approach consists on model-
ing a level of abstraction identifying those components
that need to be further specified (transparent states).
Then the model is checked with a modified model
checking algorithm (LOVER) that check the model
against a property, generating the properties that the
transparent states must satisfied for the original prop-
erty to be true in the model. This process is repeated
on the model of the transparent states (once they
are specified) against the properties generated in the
previous step. If the model contains transparent state,
new constraints, that will be checked on the model,
once it is specified.

• advantages from the modeling point of view (different
levels of abstraction help to focus to the big picture but
also to the details) and from the verification point of
view (more efficient, no need to re-run the verification
on the flat model at each refinement)

• formalisms used: statechart and CTL (explain why
statechart is suitable for incremental verification)

• generalization: analogously to what happen for incre-
mental modeling, when an adaptive systems is specified
some components are unknown and are known only at
runtime

• further generalization: verification of statechart (hierar-
chical state are seen as transparent and the verification
becomes more efficient).

III. MODELING FORMALISMS

A. Statecharts

Statechart is a structured graphical formalism used to
describe reactive systems, such as communication protocols,
digital control unit and aboard software systems. Statecharts
extend finite state machines considering hierarchy, concur-
rency, and communication, that allow the designer to model
complex systems in a more compact way. In particular,
hierarchy is used to model the system at different level of
granularity by redefining states through a (sub)statechart or
the composition of (sub)statecharts. Concurrency describes
the possible parallel behaviors of two or more statecharts
running in parallel at the same time; such behaviors are
synchronized through communication.

In this paper, we consider the original definition of Stat-
echarts which includes its most popular features, ignoring
some elements, such as time actions, history, special events
(e.g., events generated when a state is entered or exited) and
special actions (e.g., start action, history clear, deep clear)1.

Figure 1. Statechart example

B. Syntax

Given a set of atomic propositions AP , the two subsets
E and I partition it. They represent the environmental and
internal propositions, respectively. Intuitively, If a system is
defined over AP , E are propositions of which the truth value
cannot be controlled, while E are controlled. A condition c

over I is defined as c ! i | ¬c | c ^ c, while an
action a has the form a ! i = 0 | i = 1 | neg(i),
where i 2 I and neg is an operator that negate the truth
value of i. C and A are a fine set of conditions and of
actions over I , respectively. Formally, a statechart is a tuple
S = hQ,Q0, St, ⇢,E ,C ,A, ⌧i, where

• Q is a finite set of states that can be themselves
Statecharts, often call chart-states [9];

• ⇢

2 is the hierarchical relation, used to decompose states
into sub-states;

1[Paola: because . . .]
2[Paola: Ho do you define it? ✓ Q ⇥ }(S)? How the relation specify

the kind of hierarchy? Moreover the set of sub charts should be part of the
tuple... am I wrong?]
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Statecharts	  
•  Statecharts	  extend	  finite	  state	  machines	  with	  
•  Hierarchy	  
•  Concurrency	  

•  Formally,	  S	  =	  ⟨Q,	  q0,	  qF,	  St,	  ρ,	  τ⟩	  	  

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4



Statecharts	  
•  Statecharts	  extend	  finite	  state	  machines	  with	  
•  Hierarchy	  
•  Concurrency	  

•  Formally,	  S	  =	  ⟨Q,	  q0,	  qF,	  St,	  ρ,	  τ⟩	  	  

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

ρ	  ⊆	  (Q	  −	  {q0,qF})	  ×	  {AND,OR}	  ×	  ℘(St)	  	  



Statecharts	  
•  Statecharts	  extend	  finite	  state	  machines	  with	  
•  Hierarchy	  
•  Concurrency	  

•  Formally,	  S	  =	  ⟨Q,	  q0,	  qF,	  St,	  ρ,	  τ⟩	  	  

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

τ:(Q−{qF})×E×C(I)→(Q−{q0})×A(I)	  	  

e1[c1]|a1	  
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Because of the and-decomposition of Statecharts, that are
resolved by performing the Cartesian product, and the du-
plication caused by the splitting in the labeling procedure, a
transparent state s in the original Statechart may be represented
by different transparent states in the ILTS. In order to check the
derived property for the transparent component on the correct
element, the algorithm must aggregate the constraints of these
ILTS transparent states, generating a single constraint for the
original Statechart state s. Basically the aggregation consists
in a disjunction of the generated constraints, simplified by
removing the duplicated constraints.

V. RAILWAY CROSSING SYSTEM

In this section, we describe the application of our approach
through an extension of the classic Railway Crossing System
(RCS) [16]. The main goal of RCS is to control trains and
gates, such that a train never crosses a gate when it is open
(a high-level is shown in Fig. 4). This requirement is a safety
property, whose violation may lead to accidents.

There are three sensors (A, B, and C) placed on the track
to detect when a train approaches, crosses and leaves the gate.
Another property that shall be satisfied is that the train can
cross the gate only if it obtains permission from a central
authority (”central station”). The central station manages the
railway lines, and it has its own policies to regulate the
dispatching of permissions. For example, if an emergency
situation is detected and the train is approaching, the central
station will not give to the train the permission to cross, and
the train has to stop.

Sensor A Sensor B Sensor C

Fig. 4. Railway Crossing System

The high-level modeling of this system leads to the first-
level Statechart in Figure 5, which consists of two concur-
rent components: gate and train, which interact together via
transponders. The gate may be in one of two states s4 and
s5. The gate can switch between these two states by acting
on the variable open, and according to the modes of the train.
If the train is switched to approaching mode, transition t4 is
activated and the gate can be closed. When the train returns
to traveling mode, transition t5 is activated and the gate can
be opened.

The train modes are represented by three boolean variables:
traveling, approaching and crossing, which change as the three
sensors are passed. At the beginning, the train is in traveling
mode (state s1). When the train passes sensor A, event e1 is
generated, and the train moves to approaching mode (state s2).
Analogously, when sensor B is passed, it generates event e2

and the train switches to crossing (state s3). This transition is
performed only when the gate is closed. Finally, when event e3

Fig. 5. The Statecharts of RCS

is generated, the train has completely crossed the gate, and the
mode is changed back to traveling. State s2 is considered as
a transparent state, since its refinement is postponed to next
modeling phase. In fact, when the train starts approaching,
different operations can be executed and different component
can be activated.

In our case, the train, once approaching, must com-
municate with the central station to receive the permis-
sion before crossing the gate. This requirement can be ex-
pressed by two Path-qCTL '

a

= AF (crossing) and '0
a

=
¬E(¬permit U crossing), where AF stands for all path
eventually and EU stands for exists a path until. The former is
a liveness property stating that in any case the train will cross
the gate, while the latter is a safety property stating that there
is no behavior in which the train crosses without receiving
the permission. Furthermore, we consider another reliability
requirement which guarantees that the system recovers from
any failure. This property can be expressed in Path-qCTL as
'
b

= ¬ EF (EG failure). Due to lack of space, we only
focus on '0

a

and '
b

in the rest of the paper.
To reduce development risks and anticipate possible require-

ments violations in an early development stage, we would
like to check if the high-level specification (though incom-
plete) satisfies these requirements. The algorithm described
in the previous section transforms the first-level Statechart
shown in Fig. 5, into the ILTS illustrated in Fig. 6. The
ILTS is checked against the property '0

a

and '
b

. The first
property leads to the following constraints for state s2: '0

a1 =
¬E(¬permit U crossing) and '0

a2 = ¬(EpG(¬permit)).
'0
a

holds in the Statechart only if both of these constraints
are satisfied by a further refinement of s2. The verification of
the second property '

b

= ¬ EF (EG failure) reproduces
the same property for s2, which means that its satisfaction is
guaranteed if the property holds in s2.

State s2 represents a component that is in charge of
controlling the train when it is approaching. In the second
refinement, s2 is elaborated as the second level of the behavior



Path-‐qCTL	  
• qCTL	  =	  qualita-ve	  CTL	  
• Path-‐qCTL	  =	  qCTL	  +	  operator	  on	  a	  finite	  path	  	  
•  Its	  syntax	  is	  defined	  as	  

	  

	  	  	  	  	  	  φ→	  φ∧φ|¬φ|EφUφ|EGφ|p	  

•  EpGφ	  =	  “There	  exists	  a	  path	  that	  reaches	  the	  final	  state	  
in	  which	  φ	  always	  holds”	  

•  Example	  
•  φ	  =	  ¬E(¬permit	  U	  crossing)	  

|EpGφ	  



The	  Veri?ication	  Algorithm	  

CHECK(M, φ)  
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ILTS	  (with	  initial	  and	  ?inal	  states)	  
•  LTS	  on	  an	  alphabet	  AP	  =	  ⟨Q,	  τ,	  L⟩	  	  
•  Q	  =	  finite	  set	  of	  states	  
•  τ	  ⊆Q	  x	  Q	  =	  transi9on	  rela9on	  
•  L:	  Q	  →	  ℘(AP)	  =	  labeling	  func9on	  	  

•  Incomplete	  LTS	  on	  an	  alphabet	  AP	  =	  ⟨Q,	  τ,	  L⟩	  	  
•  Q	  is	  par99oned	  in	  regular	  and	  transparent	  states	  
•  Transparent	  states	  represent	  components	  
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From	  Statecharts	  to	  ILTS	  
1.  Preprocess	  transparent	  states	  
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verification, however, may not yield a definite result (TRUE
or FALSE), since the result may depend on the yet unknown
behavior of transparent states. In this case, the algorithm
calculates the set of constraints for the future refinement of
the transparent states to guarantee the satisfaction of the initial
property. The algorithm behaves in the same way for unknown
and composite states, but in the latter case, the constraints
produced by the algorithm, can be immediately checked on
the sub-Statechart. Hence, this technique allows the developer
not only to verify partially specified systems, but also to
deal efficiently with the verification of completely defined
Statecharts, by splitting the verification in multiple levels.

This approach performs the exploration of possible different
refinements efficiently in an incremental manner that only
analyzes the alternative refinements.

Algorithm 1 StateChart Verification
1: function CHECK(M , ')
2: ilts = transformSC2Ilts(M )
3: result = verify(ilts, ')
4: if result.isUnconditional() = T then
5: return result;
6: end if
7: for (trans state,sub p) in extract(result.cons) do
8: if trans state is composite then
9: subSC = load subSc(trans state, M )

10: sub result = CHECK(subSC, sub p)
11: if sub result.isUnconditional() = F then
12: result = update(result, sub result)
13: end if
14: end if
15: end for
16: return result
17: end function

Algorithm 1 works through a number of steps. First (line
2), the model M, which represents a particular level of the
Statechart, is translated into the equivalent labeled transition
system (ILTS). This ILTS is verified against the property '
and the verification outcome is returned as result. If no
constraint is generated (result.isUnconditional equals true),
the algorithm exits.

Otherwise, result.cons contains the set of constraints that
shall be satisfied by the unknown components to make the
property hold, and the rest of the algorithm iteratively ex-
tracts and analyzes each of these constraints (line 7–15). The
constraint (sub p) of each transparent state (trans state) is
checked by recursively invoking the same algorithm, feeding
the generated constraint and the corresponding Statechart
subSC. The verification result is updated and gradually com-
pleted with the outcomes of these inner verifications.

A. Statecharts-to-ILTS Transformation
Hereafter, we discuss how to transform Statecharts (with

transparent states) into an equivalent ILTS representation.
To do that, we first need to apply two preprocessing steps.

The first step eliminates transparent states by mapping each
of them onto two basic states connected by an unlabeled
transition, similarly called transparent transition. A transparent
transition represents the internal behavior of the corresponding
transparent state. The set of incoming transitions that reach the
original transparent state are connected to the source state of
the transparent transition, while the outgoing transitions depart
from the destination state, as shown in Figure 2.

... ...

S1

t i1

t i2

t ik

t o1

t o2

t ok

... ...
S 1

t i1

t i2

t ik

t o1

t o2

t ok

S 1

tt1
1 2

Fig. 2. Replacing transparent states with transparent transitions

The second preprocessing regards and states. and states
refine a state into two or more sub-Statecharts that are executed
in parallel. Our algorithm replaces these sub-Statecharts with
a single Statechart whose set of states is the Cartesian product
of the sets of states of the sub-Statecharts, and transitions
represent all possible interleavings. Transparent transitions in
the source Statecharts remain transparent also in the generated
target Statechart3.

At this point, we can generate an equivalent ILTS through
two basic steps: producing the graph and labeling the ILTS
states.

To produce the ILTS graph structure, each transition of the
Statechart is transformed into an ILTS state. If the transition is
transparent, the generated state is also transparent and labeled
with T . Since ILTS states represent transitions of the original
Statecharts, two states are connected in the ILTS only if the
corresponding transitions can be executed sequentially, one
after the other, in the original Statechart. The algorithm also
creates two additional ILTS states: the initial and the final one,
respectively connected to all the ILTS states that represent
transitions of the original Statechart connected to the initial
and final state of the Statechart. Figure 3 shows a Statechart
fragment and the corresponding target ILTS structure (drawn
with dashed lines)4.

Once the structure is created, we need to perform the (pos-
sibly incomplete) labeling of ILTS states. We recall that the
labels of ILTS states describe the set of propositions that are
true in the states, if they are known. The labeling is performed
according to the following procedure. First, each state in
the target ILTS is labeled with the events that trigger the
corresponding transition in the source Statechart. Concerning
the actions associated with a Statechart transition, since they
can modify the values of a set of atomic propositions, the

3Further optimizations are possible, and will be described in future work.
4Note that in the example, the initial and the final states are not created

since they are not present in the original Statechart.

From	  a	  state	  to	  a	  transi9on	  
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2.  Eliminate	  AND-‐states	  
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•  states	  =	  cartesian	  product	  of	  the	  states	  of	  the	  	  
sub-‐Statecharts	  

•  Transi9ons	  =	  all	  possible	  interleaving	  steps	  
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Statechart	  transi9ons	  become	  	  ILTS	  states	  
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Fig. 3. Transforming transitions into states

ones that are true are used to label the corresponding ILTS
state (let us call it s). At this stage, we need to perform
further labeling of s, since we only took into account the
actions, which tell us which atomic propositions changed by
performing the corresponding Statechart transition and this
may obviously not include all the propositions true in s. To
complete the labeling, we also need to add the propositions
in the previous states (the ones whose outgoing transitions
lead to s) that must be propagated to s because they did not
change during the transition. Notice that, in general, since a
state may be reached with different paths, after the labeling, it
may contain contradictory propositions (e.g., one may contain
p and another ¬p). In this case, we need to replace the state
with the duplicate states s1

1 and s2
1, one including label with p

and the other including ¬p. The successor states of s are then
connected to s1

1 and s2
1 and possible further propagation with

state duplication may then occur.
Finally, we need to consider the case of an ILTS transparent

state st. For simplicity, let us first assume that the possible
refinements of transparent states in the source Statechart do
not modify the truth value of propositions. This assumption
does not mean that the transitions of the sub-Statechart cannot
modify such values, but just requires that after its completion
the propositions are set back to their initial values. Let us
further assume that there is only one ILTS state (s

i1), whose
outgoing transition leads to the transparent ILTS state st.
Then, all the basic ILTS states s

o2, so3, . . . , son that directly
follow the transparent state st are labeled with the set of
atomic propositions that are true in s

i1, with the obvious
exception of the propositions modified by the Statechart tran-
sitions associated with the ILTS states s

o2, so3, . . . , son. If
we now consider the case when more than one ILTS state
(s

i1, s
i2,. . . , s

in

) preceeds st, as for the non transparent ILTS
state, contradictory situations have to be considered. If for
example, s

i1, s
i2,. . . ,s

in

contain contradictory propositions,
we need to duplicate st and handle this case similarly to
the propagation case described earlier. It is also possible to
relax the first assumption, considering the case in which the
transparent transition can modify the value of some atomic
proposition. To sketch the approach consider the case, where
a transparent ILTS state st, associated with the transparent
transition tt of the original Statechart and connected to the
state s

o2, can modify the value of the atomic proposition p.
Then s

o2 is split in two states: s1
o2 where p is true, and s2

o2

where p is false. This splitting is motivated by the need for

considering all the possible value of p after the execution of
the component in st, since this value is not a priori known.

After all states have been fully labeled, we need one final
state to take into account the effect of the condition of the
original Statechart’s transitions. For each transition t of the
original Statechart, represented as a state in ILTS (s), we
check the labeling of the previous ILTS states (say s

i1). If this
labeling is consistent with the condition of the transition t, then
the connection between s

i1 and s is kept. If this is not the case,
the connection is removed. If all the incoming connections to
a state are removed, the state itself is also removed.

B. ILTS/Path-qCTL Verification

The model-checking algorithm verifies the Path-qCTL prop-
erties against the ILTS previously generated. The Path-qCTL
properties could be the one derived by a previous step of the
verification or the original stated in �. Notice that, even if the
properties in � were stated on the Statechart and not on the
ILTS, they do not need to be changed, since the paths on the
ILTS are equivalent to the possible sequences of configuration
in the original Statechart.

The model-checking algorithm follows the steps of the
standard CTL algorithm, but differentiates between the regular
and transparent states. First, the CTL formula is parsed and
its parsing tree is derived. The leaves of this tree represent
the set of atomic propositions, while the inner nodes connect
these propositions using boolean and temporal operators.

A bottom-up approach is applied to the tree to calculate
the satisfactory states for each sub-formula, starting from the
leaves. For each node of the tree, the set of the states in
which the sub-formula holds is calculated. However, due to
the existence of transparent states, we compute and attach
constraints to those states – regular or transparent – of whose
satisfaction depends on the behavior of transparent states. We
have designed an algorithm to deal with each operator of qCTL
formulae to tackle the transparent states and generate the con-
straints step-by-step. The algorithm terminates by generating
a set of constraints for ILTS transparent states expressed as
Path-qCTL formulas. 5.

Because of the and-decomposition of Statecharts, that are
resolved by performing the Cartesian product, and the du-
plication caused by the splitting in the labeling procedure, a
transparent state s in the original Statechart may be represented
by different transparent states in the ILTS. In order to check the
derived property for the transparent component on the correct
element, the algorithm must aggregate the constraints of these
ILTS transparent states, generating a single constraint for the
original Statechart state s. Basically the aggregation consists
in a disjunction of the generated constraints, simplified by
removing the duplicated constraints.

V. RAILWAY CROSSING SYSTEM

In this section, we describe the application of our approach
through an extension of the classic Railway Crossing System

5More details on the verification algorithm can be found in [16].

Preprocessing	  



From	  Statecharts	  to	  ILTS	  
1.  Preprocess	  transparent	  states	  
2.  Eliminate	  AND-‐states	  
	  
3.  Build	  the	  ILTS	  structure	  
4.  Label	  the	  ILTS	  
	  

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

S2

S2
¬open,

approaching

¬open,
approaching

open,
approaching

open,
traveling

open,
traveling ¬open,

approaching

¬open,
crossing

¬open,
traveling

Translate	  Statecharts	  in	  ILTS	  

•  Event	  =	  label	  
•  Values	  assigned	  by	  ac9ons	  =	  label	  
•  Unchanged	  values	  are	  propagated	  
•  Split	  of	  states	  
•  Assump9on	  of	  no-‐side	  effect	  for	  transparent	  states	  

Preprocessing	  
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The	  Veri?ication	  Algorithm	  

CHECK(M, φ)  
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Update	  Results	  

Result	  

Derived	  
Proper9es	  

φ’	  φ'’	  
…’	  
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Verifying	  ILTS	  
•  Formulae	  are	  processed	  by	  naviga9ng	  their	  
parsing	  tree	  from	  the	  leaves	  to	  the	  root	  
•  Labeling	  procedure	  as	  in	  explicit	  model	  checking	  
•  Eφ1Uφ2	  

Model-‐Check	  ILTS	  

φ₁

φ₁
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φ₂

Eφ1Uφ2	  
EpGφ1	  

T	  

In	  T:	  EpGφ1	  
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Experimental	  Results	  
•  Prototype	  verifica9on	  
tool	  
•  Java	  standalone	  
applica9on	  	  

•  Experiments	  
•  Railway	  crossing	  case	  
study	  

•  Tradi9onal	  approaches	  
check	  the	  whole	  system	  
at	  each	  step	  

•  AGaVE	  checks	  the	  new	  
components	  against	  the	  
new	  constraints	  	  

cross the gate (t6). If it is granted, event e4 is generated, and
transition t8 is executed. The system moves to state s8, from
which an acknowledge message is sent to the central station
(transition t9). Instead, if the central station does not grant the
permission before a timeout, the system moves to the state
s9, a transparent state that will be later refined. One may say
that the train has to stop until the permission is issued by the
central station, but it could be an invalid assumption. Thus the
refinement is postponed to further requirements elicitations.

Once the second level of the Statechart in Fig. 5 is specified,
we check whether it satisfies the system requirements: '0

a

and
'
b

. AGAVE does not check again the whole Statechart, but
checks only s2 against the derived constraints. The verification
of '0

a1 and '0
a2 against the corresponding ILTS of s2 (shown in

Fig. 76) results in reproducing respectively the same properties
for s9. '0

a

requires both of these properties to be satisfied.
On the contrary, the verification of the reliability property
'
b

= ¬ EF (EG failure) returns false because there is
the possibility that the system infinitely remains in the failure
mode.
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Fig. 7. The ILTS for the second refinement of the running example

VI. EXPERIMENTAL EVALUATION

AGAVE is supported by a prototype verification tool, as a
Java standalone application 7. The tool takes as input two XML
files, one representing the model of the system (a Statechart)
and one representing the property to verify (in Path-qCTL).
The tool supports the syntax and semantics described in
Section III, and follows the steps of the algorithm presented
in Section IV. The output of each verification task is either
“true”, “false”, or “conditional”. In the conditional case, a set
of constraints on transparent states is reported as well.

To grasp a better understanding of how the incremental
approach is supported by AGAVE can reduce the verification
time, we provide the result of an experiment. We assumed that
RCS example (Section V) is extended through more refinement
steps by providing specifications for each transparent state.
We use the first level of the RCS Statechart introduced as
refinement at each stage. Figure 8 shows the total time required
to verify the new models introduced at each refinement.
To demonstrate the advantage of the incremental approach,
Figure 8 also shows the time needed for the traditional

6For the lack of space, only the labels that are relevant to the properties
are shown.

7Available at https://sites.google.com/site/amirsharifloo/tool-agave.

verification (one may call integrative), which considers the
whole integrated specification at the end of each refinement.
As the number of the refinement levels increases, the time
of traditional approach rapidly grows (note that the scale is
logarithmic). In particular, it reaches 1,93 minutes when a six-
level Statechart is analyzed, while AGAVE requires only 328
milliseconds. The main reason of this difference is that the
traditional approach at each step verifies the whole integrated
specification, while AGAVE only checks the sub-Statecharts
of the composite states against the constraints generated by
the previous verifications (Figure 9). Notice that our tool is a
prototype and the result can be improved by applying further
optimizations, which will be the goal of future work.
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VII. RELATED WORK

Modeling evolvable specifications is studied by Sampath et
al. [14], in which a new formalism called Structured Transition
Systems is presented to ease the evolutionary requirements
modeling and refinement. On the contrary, we exploit the ap-
plication of an existing formalism like Statecharts as a widely
known formalism that comes with nice features supporting
modularity and incremental refinement. Shaker et al. [15]
propose a feature-oriented approach to specifying the require-
ments of software product-lines (SPL) in order to facilitate
the process of adding new features to existing specifications.
This way the specification of SPL is more flexible to possible
changes. However, the approach still lacks the support for any
analysis.
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cross the gate (t6). If it is granted, event e4 is generated, and
transition t8 is executed. The system moves to state s8, from
which an acknowledge message is sent to the central station
(transition t9). Instead, if the central station does not grant the
permission before a timeout, the system moves to the state
s9, a transparent state that will be later refined. One may say
that the train has to stop until the permission is issued by the
central station, but it could be an invalid assumption. Thus the
refinement is postponed to further requirements elicitations.

Once the second level of the Statechart in Fig. 5 is specified,
we check whether it satisfies the system requirements: '0
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. AGAVE does not check again the whole Statechart, but
checks only s2 against the derived constraints. The verification
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On the contrary, the verification of the reliability property
'
b

= ¬ EF (EG failure) returns false because there is
the possibility that the system infinitely remains in the failure
mode.
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The tool supports the syntax and semantics described in
Section III, and follows the steps of the algorithm presented
in Section IV. The output of each verification task is either
“true”, “false”, or “conditional”. In the conditional case, a set
of constraints on transparent states is reported as well.

To grasp a better understanding of how the incremental
approach is supported by AGAVE can reduce the verification
time, we provide the result of an experiment. We assumed that
RCS example (Section V) is extended through more refinement
steps by providing specifications for each transparent state.
We use the first level of the RCS Statechart introduced as
refinement at each stage. Figure 8 shows the total time required
to verify the new models introduced at each refinement.
To demonstrate the advantage of the incremental approach,
Figure 8 also shows the time needed for the traditional
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verification (one may call integrative), which considers the
whole integrated specification at the end of each refinement.
As the number of the refinement levels increases, the time
of traditional approach rapidly grows (note that the scale is
logarithmic). In particular, it reaches 1,93 minutes when a six-
level Statechart is analyzed, while AGAVE requires only 328
milliseconds. The main reason of this difference is that the
traditional approach at each step verifies the whole integrated
specification, while AGAVE only checks the sub-Statecharts
of the composite states against the constraints generated by
the previous verifications (Figure 9). Notice that our tool is a
prototype and the result can be improved by applying further
optimizations, which will be the goal of future work.
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Conclusion	  
• AGaVE	  =	  AGile	  Verifica9on	  Environment	  
•  Verifica9on	  technique	  dependent	  on	  the	  modeling	  
language	  
•  Independent	  methodology	  	  

• Benefits	  in	  verifying	  	  
•  Incomplete	  specifica9ons	  
•  Analysis	  of	  different	  alterna9ves	  
•  Adap9ve	  systems	  
•  Hierarchical	  specifica9ons	  
•  Composite	  states	  can	  be	  considered	  as	  transparent	  states	  



On-‐going	  and	  Future	  Work	  
• Op9mizing	  the	  current	  verifica9on	  algorithm	  
•  Op9mize	  the	  AND-‐state	  management	  
•  Efficiently	  remove	  the	  no-‐side	  effect	  assump9on	  
	  

•  Extending	  the	  verifica9on	  and	  the	  proper9es	  
•  Consider	  also	  operators	  AX	  and	  EX	  
•  Deal	  with	  metric	  operators	  
•  Add	  9med	  transi9ons	  	  


