
On	 Requirements	
Veri.ication	 for	 Model	

Re.inements	

Carlo	 Ghezzi 	 	 	 Politecnico	 di	 Milano	
Claudio	 Menghi	 	 	 Politecnico	 di	 Milano	
Amir	 Molzam	 Sharifloo 	 	 Politecnico	 di	 Milano	

	
	

Paola	 Spole9ni	
Università	 degli	 Studi	 dell’Insubria	

•  Modern	 soAware	 systems	 are	 oAen	 developed	 in	 an	
agile	 fashion	
•  At	 each	 step	 the	 model	 of	 the	 system	
is	 incomplete	 …	
•  Perform	 verifica9on	 at	 each	 itera9on	
•  Wait	 un9l	 the	 end	 to	 verify	 the	 system	
•  Make	 assump9ons	 on	 the	 missing	 parts	 before	 verifying 	 	
	

	 How	 to	 perform	 verifica9on	
efficiently	 and	 automa-cally	 	
at	 each	 itera9on?	

	

Motivation	

Idea	
	

AGaVE:	 AGile	 Verifica9on	 	
Environment	
	
Verifica9on	 technique	 	
•  to	 check	 whether	 a	 specifica9on	 sa9sfies	 a	 given	
property	
•  to	 (automa9cally)	 generate	 sub-‐proper9es	 that	 the	
missing	 components	 have	 to	 respect	

C11

Developer
YES

NO

Developer

Approach	 overview	

C2C1

II. AN OVERVIEW ON THE APPROACH

In general, the design phase consists in a series of subse-
quent refinement steps, that allows the designer to model the
system starting from an high level of abstraction, in which a
general structure of the model is given, to the a level of
detail, that describes the behavior of all the components
of the system. If a verification technique is used during
the design, this incremental approach requires to verify the
system every time a new component is specified or to apply
an assume-guarantee method [?], that need the designer
to add assumption to its system. Both the approach are
inconvenient: the first can be extremely expensive in terms
of time and the second can be unfeasible in this context
since the different components are not know at each level
of refinement.

To cope with these limitations, we propose XXX, a
methodology for supporting the design phase of complex
systems, by providing an analysis method that can be applied
incrementally while the model is built.

EG('1) '2)
Outline
• Incremental modeling consists in specifying systems

refining them with subsequent steps of refinement (at
each step the introduced components are unknown and
not detailed)

• Our proposal is an approach to incremental modeling
and verifying systems. The approach consists on model-
ing a level of abstraction identifying those components
that need to be further specified (transparent states).
Then the model is checked with a modified model
checking algorithm (LOVER) that check the model
against a property, generating the properties that the
transparent states must satisfied for the original prop-
erty to be true in the model. This process is repeated
on the model of the transparent states (once they
are specified) against the properties generated in the
previous step. If the model contains transparent state,
new constraints, that will be checked on the model,
once it is specified.

• advantages from the modeling point of view (different
levels of abstraction help to focus to the big picture but
also to the details) and from the verification point of
view (more efficient, no need to re-run the verification
on the flat model at each refinement)

• formalisms used: statechart and CTL (explain why
statechart is suitable for incremental verification)

• generalization: analogously to what happen for incre-
mental modeling, when an adaptive systems is specified
some components are unknown and are known only at
runtime

• further generalization: verification of statechart (hierar-
chical state are seen as transparent and the verification
becomes more efficient).

III. MODELING FORMALISMS

A. Statecharts

Statechart is a structured graphical formalism used to
describe reactive systems, such as communication protocols,
digital control unit and aboard software systems. Statecharts
extend finite state machines considering hierarchy, concur-
rency, and communication, that allow the designer to model
complex systems in a more compact way. In particular,
hierarchy is used to model the system at different level of
granularity by redefining states through a (sub)statechart or
the composition of (sub)statecharts. Concurrency describes
the possible parallel behaviors of two or more statecharts
running in parallel at the same time; such behaviors are
synchronized through communication.

In this paper, we consider the original definition of Stat-
echarts which includes its most popular features, ignoring
some elements, such as time actions, history, special events
(e.g., events generated when a state is entered or exited) and
special actions (e.g., start action, history clear, deep clear)1.

Figure 1. Statechart example

B. Syntax

Given a set of atomic propositions AP , the two subsets
E and I partition it. They represent the environmental and
internal propositions, respectively. Intuitively, If a system is
defined over AP , E are propositions of which the truth value
cannot be controlled, while E are controlled. A condition c

over I is defined as c ! i | ¬c | c ^ c, while an
action a has the form a ! i = 0 | i = 1 | neg(i),
where i 2 I and neg is an operator that negate the truth
value of i. C and A are a fine set of conditions and of
actions over I , respectively. Formally, a statechart is a tuple
S = hQ,Q0, St, ⇢,E ,C ,A, ⌧i, where

• Q is a finite set of states that can be themselves
Statecharts, often call chart-states [9];

• ⇢

2 is the hierarchical relation, used to decompose states
into sub-states;

1[Paola: because . . .]
2[Paola: Ho do you define it? ✓ Q ⇥ }(S)? How the relation specify

the kind of hierarchy? Moreover the set of sub charts should be part of the
tuple... am I wrong?]

Original property P

First Model

Derived propertiesDerived properties

……..

Level	 1	

Level	 2	

Statecharts	
•  Statecharts	 extend	 finite	 state	 machines	 with	
•  Hierarchy	
•  Concurrency	

•  Formally,	 S	 =	 ⟨Q,	 q0,	 qF,	 St,	 ρ,	 τ⟩	 	

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

Statecharts	
•  Statecharts	 extend	 finite	 state	 machines	 with	
•  Hierarchy	
•  Concurrency	

•  Formally,	 S	 =	 ⟨Q,	 q0,	 qF,	 St,	 ρ,	 τ⟩	 	

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

ρ	 ⊆	 (Q	 −	 {q0,qF})	 ×	 {AND,OR}	 ×	 ℘(St)	 	

Statecharts	
•  Statecharts	 extend	 finite	 state	 machines	 with	
•  Hierarchy	
•  Concurrency	

•  Formally,	 S	 =	 ⟨Q,	 q0,	 qF,	 St,	 ρ,	 τ⟩	 	

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

τ:(Q−{qF})×E×C(I)→(Q−{q0})×A(I)	 	

e1[c1]|a1	

Statecharts	
•  Statecharts	 extend	 finite	 state	 machines	 with	
•  Hierarchy	
•  Concurrency	

•  Formally,	 S	 =	 ⟨Q,	 q0,	 qF,	 St,	 ρ,	 τ⟩	 	

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

Example	
RCS

Train

s₁

Gate

s₂

s₃

t₁:1
e₁[traveling]/
approaching
¬traveling

t₂:
e₂[approaching

¬open]/
crossing

¬approaching

t₃:1
e₃[crossing]/
travelling
¬crossing

s₄

s₅

t₅:1
[traveling]/

open

t₄:1
[approaching]/

¬open

RCS
Train

s₁

Gate

s₂

s₃

t₁:1
e₁[traveling]/
approaching
¬traveling

t₂:
e₂[approaching

¬open]/
crossing

¬approaching

t₃:1
e₃[crossing]/
travelling
¬crossing

s₄

s₅

t₅:1
[traveling]/

open

t₄:1
[approaching]/

¬open

T

s₇

t₆:
[]/

askPermit

s₉

t₁₀:
Timeout
[¬permit]/

t₈:
e₄[]/
permit

t₇:
[]/

askPermit

s₈ t₉:
[permit]/

ackToCentralSta;on

t₁₁
T

s₁₀

t₁₁:
e₅[]/
failure

t₁₂:
[]/

¬failure

t₁₃:
[]/

alarm

Because of the and-decomposition of Statecharts, that are
resolved by performing the Cartesian product, and the du-
plication caused by the splitting in the labeling procedure, a
transparent state s in the original Statechart may be represented
by different transparent states in the ILTS. In order to check the
derived property for the transparent component on the correct
element, the algorithm must aggregate the constraints of these
ILTS transparent states, generating a single constraint for the
original Statechart state s. Basically the aggregation consists
in a disjunction of the generated constraints, simplified by
removing the duplicated constraints.

V. RAILWAY CROSSING SYSTEM

In this section, we describe the application of our approach
through an extension of the classic Railway Crossing System
(RCS) [16]. The main goal of RCS is to control trains and
gates, such that a train never crosses a gate when it is open
(a high-level is shown in Fig. 4). This requirement is a safety
property, whose violation may lead to accidents.

There are three sensors (A, B, and C) placed on the track
to detect when a train approaches, crosses and leaves the gate.
Another property that shall be satisfied is that the train can
cross the gate only if it obtains permission from a central
authority (”central station”). The central station manages the
railway lines, and it has its own policies to regulate the
dispatching of permissions. For example, if an emergency
situation is detected and the train is approaching, the central
station will not give to the train the permission to cross, and
the train has to stop.

Sensor A Sensor B Sensor C

Fig. 4. Railway Crossing System

The high-level modeling of this system leads to the first-
level Statechart in Figure 5, which consists of two concur-
rent components: gate and train, which interact together via
transponders. The gate may be in one of two states s4 and
s5. The gate can switch between these two states by acting
on the variable open, and according to the modes of the train.
If the train is switched to approaching mode, transition t4 is
activated and the gate can be closed. When the train returns
to traveling mode, transition t5 is activated and the gate can
be opened.

The train modes are represented by three boolean variables:
traveling, approaching and crossing, which change as the three
sensors are passed. At the beginning, the train is in traveling
mode (state s1). When the train passes sensor A, event e1 is
generated, and the train moves to approaching mode (state s2).
Analogously, when sensor B is passed, it generates event e2

and the train switches to crossing (state s3). This transition is
performed only when the gate is closed. Finally, when event e3

Fig. 5. The Statecharts of RCS

is generated, the train has completely crossed the gate, and the
mode is changed back to traveling. State s2 is considered as
a transparent state, since its refinement is postponed to next
modeling phase. In fact, when the train starts approaching,
different operations can be executed and different component
can be activated.

In our case, the train, once approaching, must com-
municate with the central station to receive the permis-
sion before crossing the gate. This requirement can be ex-
pressed by two Path-qCTL '

a

= AF (crossing) and '0
a

=
¬E(¬permit U crossing), where AF stands for all path
eventually and EU stands for exists a path until. The former is
a liveness property stating that in any case the train will cross
the gate, while the latter is a safety property stating that there
is no behavior in which the train crosses without receiving
the permission. Furthermore, we consider another reliability
requirement which guarantees that the system recovers from
any failure. This property can be expressed in Path-qCTL as
'
b

= ¬ EF (EG failure). Due to lack of space, we only
focus on '0

a

and '
b

in the rest of the paper.
To reduce development risks and anticipate possible require-

ments violations in an early development stage, we would
like to check if the high-level specification (though incom-
plete) satisfies these requirements. The algorithm described
in the previous section transforms the first-level Statechart
shown in Fig. 5, into the ILTS illustrated in Fig. 6. The
ILTS is checked against the property '0

a

and '
b

. The first
property leads to the following constraints for state s2: '0

a1 =
¬E(¬permit U crossing) and '0

a2 = ¬(EpG(¬permit)).
'0
a

holds in the Statechart only if both of these constraints
are satisfied by a further refinement of s2. The verification of
the second property '

b

= ¬ EF (EG failure) reproduces
the same property for s2, which means that its satisfaction is
guaranteed if the property holds in s2.

State s2 represents a component that is in charge of
controlling the train when it is approaching. In the second
refinement, s2 is elaborated as the second level of the behavior

Path-‐qCTL	
• qCTL	 =	 qualita-ve	 CTL	
• Path-‐qCTL	 =	 qCTL	 +	 operator	 on	 a	 finite	 path	 	
•  Its	 syntax	 is	 defined	 as	

	

	 	 	 	 	 	 φ→	 φ∧φ|¬φ|EφUφ|EGφ|p	

•  EpGφ	 =	 “There	 exists	 a	 path	 that	 reaches	 the	 final	 state	
in	 which	 φ	 always	 holds”	

•  Example	
•  φ	 =	 ¬E(¬permit	 U	 crossing)	

|EpGφ	

The	 Veri?ication	 Algorithm	

CHECK(M, φ)

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

S2

S2
¬open,

approaching

¬open,
approaching

open,
approaching

open,
traveling

open,
traveling ¬open,

approaching

¬open,
crossing

¬open,
traveling

Translate	 Statecharts	 in	 ILTS	

ILTS	

Model-‐Check	 ILTS	

Result	

Derived	
Proper9es	

Developer
e1[c1]|a1 e2[c2]|a2

e3[c3]|a3

e4[c4]|a4

CHECK(M’,φ’)

Update	 Results	

φ’	 φ'’	
…’	

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

S2

S2
¬open,

approaching

¬open,
approaching

open,
approaching

open,
traveling

open,
traveling ¬open,

approaching

¬open,
crossing

¬open,
traveling

Translate	 Statecharts	 in	 ILTS	

ILTS	 (with	 initial	 and	 ?inal	 states)	
•  LTS	 on	 an	 alphabet	 AP	 =	 ⟨Q,	 τ,	 L⟩	 	
•  Q	 =	 finite	 set	 of	 states	
•  τ	 ⊆Q	 x	 Q	 =	 transi9on	 rela9on	
•  L:	 Q	 →	 ℘(AP)	 =	 labeling	 func9on	 	

•  Incomplete	 LTS	 on	 an	 alphabet	 AP	 =	 ⟨Q,	 τ,	 L⟩	 	
•  Q	 is	 par99oned	 in	 regular	 and	 transparent	 states	
•  Transparent	 states	 represent	 components	

a

a

c

b

c

b

a

a b

c

b

a

a

c

bb

a

From	 Statecharts	 to	 ILTS	
1.  Preprocess	 transparent	 states	

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

S2

S2
¬open,

approaching

¬open,
approaching

open,
approaching

open,
traveling

open,
traveling ¬open,

approaching

¬open,
crossing

¬open,
traveling

Translate	 Statecharts	 in	 ILTS	

verification, however, may not yield a definite result (TRUE
or FALSE), since the result may depend on the yet unknown
behavior of transparent states. In this case, the algorithm
calculates the set of constraints for the future refinement of
the transparent states to guarantee the satisfaction of the initial
property. The algorithm behaves in the same way for unknown
and composite states, but in the latter case, the constraints
produced by the algorithm, can be immediately checked on
the sub-Statechart. Hence, this technique allows the developer
not only to verify partially specified systems, but also to
deal efficiently with the verification of completely defined
Statecharts, by splitting the verification in multiple levels.

This approach performs the exploration of possible different
refinements efficiently in an incremental manner that only
analyzes the alternative refinements.

Algorithm 1 StateChart Verification
1: function CHECK(M , ')
2: ilts = transformSC2Ilts(M)
3: result = verify(ilts, ')
4: if result.isUnconditional() = T then
5: return result;
6: end if
7: for (trans state,sub p) in extract(result.cons) do
8: if trans state is composite then
9: subSC = load subSc(trans state, M)

10: sub result = CHECK(subSC, sub p)
11: if sub result.isUnconditional() = F then
12: result = update(result, sub result)
13: end if
14: end if
15: end for
16: return result
17: end function

Algorithm 1 works through a number of steps. First (line
2), the model M, which represents a particular level of the
Statechart, is translated into the equivalent labeled transition
system (ILTS). This ILTS is verified against the property '
and the verification outcome is returned as result. If no
constraint is generated (result.isUnconditional equals true),
the algorithm exits.

Otherwise, result.cons contains the set of constraints that
shall be satisfied by the unknown components to make the
property hold, and the rest of the algorithm iteratively ex-
tracts and analyzes each of these constraints (line 7–15). The
constraint (sub p) of each transparent state (trans state) is
checked by recursively invoking the same algorithm, feeding
the generated constraint and the corresponding Statechart
subSC. The verification result is updated and gradually com-
pleted with the outcomes of these inner verifications.

A. Statecharts-to-ILTS Transformation
Hereafter, we discuss how to transform Statecharts (with

transparent states) into an equivalent ILTS representation.
To do that, we first need to apply two preprocessing steps.

The first step eliminates transparent states by mapping each
of them onto two basic states connected by an unlabeled
transition, similarly called transparent transition. A transparent
transition represents the internal behavior of the corresponding
transparent state. The set of incoming transitions that reach the
original transparent state are connected to the source state of
the transparent transition, while the outgoing transitions depart
from the destination state, as shown in Figure 2.

... ...

S1

t i1

t i2

t ik

t o1

t o2

t ok

... ...
S 1

t i1

t i2

t ik

t o1

t o2

t ok

S 1

tt1
1 2

Fig. 2. Replacing transparent states with transparent transitions

The second preprocessing regards and states. and states
refine a state into two or more sub-Statecharts that are executed
in parallel. Our algorithm replaces these sub-Statecharts with
a single Statechart whose set of states is the Cartesian product
of the sets of states of the sub-Statecharts, and transitions
represent all possible interleavings. Transparent transitions in
the source Statecharts remain transparent also in the generated
target Statechart3.

At this point, we can generate an equivalent ILTS through
two basic steps: producing the graph and labeling the ILTS
states.

To produce the ILTS graph structure, each transition of the
Statechart is transformed into an ILTS state. If the transition is
transparent, the generated state is also transparent and labeled
with T . Since ILTS states represent transitions of the original
Statecharts, two states are connected in the ILTS only if the
corresponding transitions can be executed sequentially, one
after the other, in the original Statechart. The algorithm also
creates two additional ILTS states: the initial and the final one,
respectively connected to all the ILTS states that represent
transitions of the original Statechart connected to the initial
and final state of the Statechart. Figure 3 shows a Statechart
fragment and the corresponding target ILTS structure (drawn
with dashed lines)4.

Once the structure is created, we need to perform the (pos-
sibly incomplete) labeling of ILTS states. We recall that the
labels of ILTS states describe the set of propositions that are
true in the states, if they are known. The labeling is performed
according to the following procedure. First, each state in
the target ILTS is labeled with the events that trigger the
corresponding transition in the source Statechart. Concerning
the actions associated with a Statechart transition, since they
can modify the values of a set of atomic propositions, the

3Further optimizations are possible, and will be described in future work.
4Note that in the example, the initial and the final states are not created

since they are not present in the original Statechart.

From	 a	 state	 to	 a	 transi9on	

From	 Statecharts	 to	 ILTS	
1.  Preprocess	 transparent	 states	
2.  Eliminate	 AND-‐states	
	

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

S2

S2
¬open,

approaching

¬open,
approaching

open,
approaching

open,
traveling

open,
traveling ¬open,

approaching

¬open,
crossing

¬open,
traveling

Translate	 Statecharts	 in	 ILTS	

•  states	 =	 cartesian	 product	 of	 the	 states	 of	 the	 	
sub-‐Statecharts	

•  Transi9ons	 =	 all	 possible	 interleaving	 steps	

From	 Statecharts	 to	 ILTS	
1.  Preprocess	 transparent	 states	
2.  Eliminate	 AND-‐states	
	
3.  Build	 the	 ILTS	 structure	

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

S2

S2
¬open,

approaching

¬open,
approaching

open,
approaching

open,
traveling

open,
traveling ¬open,

approaching

¬open,
crossing

¬open,
traveling

Translate	 Statecharts	 in	 ILTS	

Statechart	 transi9ons	 become	 	 ILTS	 states	

S
1

S
2

S
3

S
4

12t 23t

24t

Fig. 3. Transforming transitions into states

ones that are true are used to label the corresponding ILTS
state (let us call it s). At this stage, we need to perform
further labeling of s, since we only took into account the
actions, which tell us which atomic propositions changed by
performing the corresponding Statechart transition and this
may obviously not include all the propositions true in s. To
complete the labeling, we also need to add the propositions
in the previous states (the ones whose outgoing transitions
lead to s) that must be propagated to s because they did not
change during the transition. Notice that, in general, since a
state may be reached with different paths, after the labeling, it
may contain contradictory propositions (e.g., one may contain
p and another ¬p). In this case, we need to replace the state
with the duplicate states s1

1 and s2
1, one including label with p

and the other including ¬p. The successor states of s are then
connected to s1

1 and s2
1 and possible further propagation with

state duplication may then occur.
Finally, we need to consider the case of an ILTS transparent

state st. For simplicity, let us first assume that the possible
refinements of transparent states in the source Statechart do
not modify the truth value of propositions. This assumption
does not mean that the transitions of the sub-Statechart cannot
modify such values, but just requires that after its completion
the propositions are set back to their initial values. Let us
further assume that there is only one ILTS state (s

i1), whose
outgoing transition leads to the transparent ILTS state st.
Then, all the basic ILTS states s

o2, so3, . . . , son that directly
follow the transparent state st are labeled with the set of
atomic propositions that are true in s

i1, with the obvious
exception of the propositions modified by the Statechart tran-
sitions associated with the ILTS states s

o2, so3, . . . , son. If
we now consider the case when more than one ILTS state
(s

i1, s
i2,. . . , s

in

) preceeds st, as for the non transparent ILTS
state, contradictory situations have to be considered. If for
example, s

i1, s
i2,. . . ,s

in

contain contradictory propositions,
we need to duplicate st and handle this case similarly to
the propagation case described earlier. It is also possible to
relax the first assumption, considering the case in which the
transparent transition can modify the value of some atomic
proposition. To sketch the approach consider the case, where
a transparent ILTS state st, associated with the transparent
transition tt of the original Statechart and connected to the
state s

o2, can modify the value of the atomic proposition p.
Then s

o2 is split in two states: s1
o2 where p is true, and s2

o2

where p is false. This splitting is motivated by the need for

considering all the possible value of p after the execution of
the component in st, since this value is not a priori known.

After all states have been fully labeled, we need one final
state to take into account the effect of the condition of the
original Statechart’s transitions. For each transition t of the
original Statechart, represented as a state in ILTS (s), we
check the labeling of the previous ILTS states (say s

i1). If this
labeling is consistent with the condition of the transition t, then
the connection between s

i1 and s is kept. If this is not the case,
the connection is removed. If all the incoming connections to
a state are removed, the state itself is also removed.

B. ILTS/Path-qCTL Verification

The model-checking algorithm verifies the Path-qCTL prop-
erties against the ILTS previously generated. The Path-qCTL
properties could be the one derived by a previous step of the
verification or the original stated in �. Notice that, even if the
properties in � were stated on the Statechart and not on the
ILTS, they do not need to be changed, since the paths on the
ILTS are equivalent to the possible sequences of configuration
in the original Statechart.

The model-checking algorithm follows the steps of the
standard CTL algorithm, but differentiates between the regular
and transparent states. First, the CTL formula is parsed and
its parsing tree is derived. The leaves of this tree represent
the set of atomic propositions, while the inner nodes connect
these propositions using boolean and temporal operators.

A bottom-up approach is applied to the tree to calculate
the satisfactory states for each sub-formula, starting from the
leaves. For each node of the tree, the set of the states in
which the sub-formula holds is calculated. However, due to
the existence of transparent states, we compute and attach
constraints to those states – regular or transparent – of whose
satisfaction depends on the behavior of transparent states. We
have designed an algorithm to deal with each operator of qCTL
formulae to tackle the transparent states and generate the con-
straints step-by-step. The algorithm terminates by generating
a set of constraints for ILTS transparent states expressed as
Path-qCTL formulas. 5.

Because of the and-decomposition of Statecharts, that are
resolved by performing the Cartesian product, and the du-
plication caused by the splitting in the labeling procedure, a
transparent state s in the original Statechart may be represented
by different transparent states in the ILTS. In order to check the
derived property for the transparent component on the correct
element, the algorithm must aggregate the constraints of these
ILTS transparent states, generating a single constraint for the
original Statechart state s. Basically the aggregation consists
in a disjunction of the generated constraints, simplified by
removing the duplicated constraints.

V. RAILWAY CROSSING SYSTEM

In this section, we describe the application of our approach
through an extension of the classic Railway Crossing System

5More details on the verification algorithm can be found in [16].

Preprocessing	

From	 Statecharts	 to	 ILTS	
1.  Preprocess	 transparent	 states	
2.  Eliminate	 AND-‐states	
	
3.  Build	 the	 ILTS	 structure	
4.  Label	 the	 ILTS	
	

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

S2

S2
¬open,

approaching

¬open,
approaching

open,
approaching

open,
traveling

open,
traveling ¬open,

approaching

¬open,
crossing

¬open,
traveling

Translate	 Statecharts	 in	 ILTS	

•  Event	 =	 label	
•  Values	 assigned	 by	 ac9ons	 =	 label	
•  Unchanged	 values	 are	 propagated	
•  Split	 of	 states	
•  Assump9on	 of	 no-‐side	 effect	 for	 transparent	 states	

Preprocessing	

s₇

t₆:
[]/

askPermit

s₉

t₁₀:
Timeout
[¬permit]/

t₈:
e₄[]/
permit

t₇:
[]/

askPermit

s₈ t₉:
[permit]/

ackToCentralSta;on

t₁₁
T

s₁₀

t₁₁:
e₅[]/
failure

t₁₂:
[]/

¬failure

t₁₃:
[]/

alarm

Example	

permit

S9 timeout¬permit,
timeout

permit,
ack

¬permit,
askPermit

¬permit,
failure

¬permit,
failure,
alarm

¬permit,
¬failure

1	

1	

1	

2	

2	

3	

3	

4	

4	

The	 Veri?ication	 Algorithm	

CHECK(M, φ)

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

S2

S2
¬open,

approaching

¬open,
approaching

open,
approaching

open,
traveling

open,
traveling ¬open,

approaching

¬open,
crossing

¬open,
traveling

Translate	 Statecharts	 in	 ILTS	

ILTS	

Model-‐Check	 ILTS	

Developer
e1[c1]|a1 e2[c2]|a2

e3[c3]|a3

e4[c4]|a4

CHECK(M’,φ’)

Update	 Results	

Result	

Derived	
Proper9es	

φ’	 φ'’	
…’	

Model-‐Check	 ILTS	

Verifying	 ILTS	
•  Formulae	 are	 processed	 by	 naviga9ng	 their	
parsing	 tree	 from	 the	 leaves	 to	 the	 root	
•  Labeling	 procedure	 as	 in	 explicit	 model	 checking	
•  Eφ1Uφ2	

Model-‐Check	 ILTS	

φ₁

φ₁

φ₂

φ₂

Eφ1Uφ2	
EpGφ1	

T	

In	 T:	 EpGφ1	

The	 Veri?ication	 Algorithm	

CHECK(M, φ)

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

S2

S2
¬open,

approaching

¬open,
approaching

open,
approaching

open,
traveling

open,
traveling ¬open,

approaching

¬open,
crossing

¬open,
traveling

Translate	 Statecharts	 in	 ILTS	

ILTS	

Model-‐Check	 ILTS	

Result	

Derived	
Proper9es	

Developer
e1[c1]|a1 e2[c2]|a2

e3[c3]|a3

e4[c4]|a4

CHECK(M’,φ’)

Update	 Results	

φ'’	 φ’	
…’	

e1[c1]|a1 e2[c2]|a2
e3[c3]|a3

e4[c4]|a4

S2

S2
¬open,

approaching

¬open,
approaching

open,
approaching

open,
traveling

open,
traveling ¬open,

approaching

¬open,
crossing

¬open,
traveling

Translate	 Statecharts	 in	 ILTS	

Developer
e1[c1]|a1 e2[c2]|a2

e3[c3]|a3

e4[c4]|a4

CHECK(M’,φ’)

Update	 Results	

φ'’	 φ’	
…	

Experimental	 Results	
•  Prototype	 verifica9on	
tool	
•  Java	 standalone	
applica9on	 	

•  Experiments	
•  Railway	 crossing	 case	
study	

•  Tradi9onal	 approaches	
check	 the	 whole	 system	
at	 each	 step	

•  AGaVE	 checks	 the	 new	
components	 against	 the	
new	 constraints	 	

cross the gate (t6). If it is granted, event e4 is generated, and
transition t8 is executed. The system moves to state s8, from
which an acknowledge message is sent to the central station
(transition t9). Instead, if the central station does not grant the
permission before a timeout, the system moves to the state
s9, a transparent state that will be later refined. One may say
that the train has to stop until the permission is issued by the
central station, but it could be an invalid assumption. Thus the
refinement is postponed to further requirements elicitations.

Once the second level of the Statechart in Fig. 5 is specified,
we check whether it satisfies the system requirements: '0

a

and
'
b

. AGAVE does not check again the whole Statechart, but
checks only s2 against the derived constraints. The verification
of '0

a1 and '0
a2 against the corresponding ILTS of s2 (shown in

Fig. 76) results in reproducing respectively the same properties
for s9. '0

a

requires both of these properties to be satisfied.
On the contrary, the verification of the reliability property
'
b

= ¬ EF (EG failure) returns false because there is
the possibility that the system infinitely remains in the failure
mode.

permit

S9 timeout¬permit,
timeout

permit,
ack

¬permit,
askPermit

¬permit,
failure

¬permit,
failure,
alarm

¬permit,
¬failure

¬permit,
askPermit

Fig. 7. The ILTS for the second refinement of the running example

VI. EXPERIMENTAL EVALUATION

AGAVE is supported by a prototype verification tool, as a
Java standalone application 7. The tool takes as input two XML
files, one representing the model of the system (a Statechart)
and one representing the property to verify (in Path-qCTL).
The tool supports the syntax and semantics described in
Section III, and follows the steps of the algorithm presented
in Section IV. The output of each verification task is either
“true”, “false”, or “conditional”. In the conditional case, a set
of constraints on transparent states is reported as well.

To grasp a better understanding of how the incremental
approach is supported by AGAVE can reduce the verification
time, we provide the result of an experiment. We assumed that
RCS example (Section V) is extended through more refinement
steps by providing specifications for each transparent state.
We use the first level of the RCS Statechart introduced as
refinement at each stage. Figure 8 shows the total time required
to verify the new models introduced at each refinement.
To demonstrate the advantage of the incremental approach,
Figure 8 also shows the time needed for the traditional

6For the lack of space, only the labels that are relevant to the properties
are shown.

7Available at https://sites.google.com/site/amirsharifloo/tool-agave.

verification (one may call integrative), which considers the
whole integrated specification at the end of each refinement.
As the number of the refinement levels increases, the time
of traditional approach rapidly grows (note that the scale is
logarithmic). In particular, it reaches 1,93 minutes when a six-
level Statechart is analyzed, while AGAVE requires only 328
milliseconds. The main reason of this difference is that the
traditional approach at each step verifies the whole integrated
specification, while AGAVE only checks the sub-Statecharts
of the composite states against the constraints generated by
the previous verifications (Figure 9). Notice that our tool is a
prototype and the result can be improved by applying further
optimizations, which will be the goal of future work.

1"

10"

100"

1000"

10000"

100000"

1000000"

1""""" 2""""" 3""""" 4""""" 5""""" 6"""""

Ve
rifi

ca
tio

n
tim

e
[m

s]
 !

Statechart level!

AGAVE

Integrative
Approach

Fig. 8. The verification time required for each level of the Statechart

VII. RELATED WORK

Modeling evolvable specifications is studied by Sampath et
al. [14], in which a new formalism called Structured Transition
Systems is presented to ease the evolutionary requirements
modeling and refinement. On the contrary, we exploit the ap-
plication of an existing formalism like Statecharts as a widely
known formalism that comes with nice features supporting
modularity and incremental refinement. Shaker et al. [15]
propose a feature-oriented approach to specifying the require-
ments of software product-lines (SPL) in order to facilitate
the process of adding new features to existing specifications.
This way the specification of SPL is more flexible to possible
changes. However, the approach still lacks the support for any
analysis.

0"

100"

200"

300"

400"

500"

600"

1" 2" 3" 4" 5" 6"

Ve
rifi

ca
tio

n
sp

ac
e
!

[N
um

be
r o

f s
ta

te
s]
!

Statechart level!

AGAVE!

Integrative
Approach!

Fig. 9. The number of states analyzed for each level of the Statechart

cross the gate (t6). If it is granted, event e4 is generated, and
transition t8 is executed. The system moves to state s8, from
which an acknowledge message is sent to the central station
(transition t9). Instead, if the central station does not grant the
permission before a timeout, the system moves to the state
s9, a transparent state that will be later refined. One may say
that the train has to stop until the permission is issued by the
central station, but it could be an invalid assumption. Thus the
refinement is postponed to further requirements elicitations.

Once the second level of the Statechart in Fig. 5 is specified,
we check whether it satisfies the system requirements: '0

a

and
'
b

. AGAVE does not check again the whole Statechart, but
checks only s2 against the derived constraints. The verification
of '0

a1 and '0
a2 against the corresponding ILTS of s2 (shown in

Fig. 76) results in reproducing respectively the same properties
for s9. '0

a

requires both of these properties to be satisfied.
On the contrary, the verification of the reliability property
'
b

= ¬ EF (EG failure) returns false because there is
the possibility that the system infinitely remains in the failure
mode.

permit

S9 timeout¬permit,
timeout

permit,
ack

¬permit,
askPermit

¬permit,
failure

¬permit,
failure,
alarm

¬permit,
¬failure

¬permit,
askPermit

Fig. 7. The ILTS for the second refinement of the running example

VI. EXPERIMENTAL EVALUATION

AGAVE is supported by a prototype verification tool, as a
Java standalone application 7. The tool takes as input two XML
files, one representing the model of the system (a Statechart)
and one representing the property to verify (in Path-qCTL).
The tool supports the syntax and semantics described in
Section III, and follows the steps of the algorithm presented
in Section IV. The output of each verification task is either
“true”, “false”, or “conditional”. In the conditional case, a set
of constraints on transparent states is reported as well.

To grasp a better understanding of how the incremental
approach is supported by AGAVE can reduce the verification
time, we provide the result of an experiment. We assumed that
RCS example (Section V) is extended through more refinement
steps by providing specifications for each transparent state.
We use the first level of the RCS Statechart introduced as
refinement at each stage. Figure 8 shows the total time required
to verify the new models introduced at each refinement.
To demonstrate the advantage of the incremental approach,
Figure 8 also shows the time needed for the traditional

6For the lack of space, only the labels that are relevant to the properties
are shown.

7Available at https://sites.google.com/site/amirsharifloo/tool-agave.

verification (one may call integrative), which considers the
whole integrated specification at the end of each refinement.
As the number of the refinement levels increases, the time
of traditional approach rapidly grows (note that the scale is
logarithmic). In particular, it reaches 1,93 minutes when a six-
level Statechart is analyzed, while AGAVE requires only 328
milliseconds. The main reason of this difference is that the
traditional approach at each step verifies the whole integrated
specification, while AGAVE only checks the sub-Statecharts
of the composite states against the constraints generated by
the previous verifications (Figure 9). Notice that our tool is a
prototype and the result can be improved by applying further
optimizations, which will be the goal of future work.

1"

10"

100"

1000"

10000"

100000"

1000000"

1""""" 2""""" 3""""" 4""""" 5""""" 6"""""

Ve
rifi

ca
tio

n
tim

e
[m

s]
 !

Statechart level!

AGAVE

Integrative
Approach

Fig. 8. The verification time required for each level of the Statechart

VII. RELATED WORK

Modeling evolvable specifications is studied by Sampath et
al. [14], in which a new formalism called Structured Transition
Systems is presented to ease the evolutionary requirements
modeling and refinement. On the contrary, we exploit the ap-
plication of an existing formalism like Statecharts as a widely
known formalism that comes with nice features supporting
modularity and incremental refinement. Shaker et al. [15]
propose a feature-oriented approach to specifying the require-
ments of software product-lines (SPL) in order to facilitate
the process of adding new features to existing specifications.
This way the specification of SPL is more flexible to possible
changes. However, the approach still lacks the support for any
analysis.

0"

100"

200"

300"

400"

500"

600"

1" 2" 3" 4" 5" 6"

Ve
rifi

ca
tio

n
sp

ac
e
!

[N
um

be
r o

f s
ta

te
s]
!

Statechart level!

AGAVE!

Integrative
Approach!

Fig. 9. The number of states analyzed for each level of the Statechart

Conclusion	
• AGaVE	 =	 AGile	 Verifica9on	 Environment	
•  Verifica9on	 technique	 dependent	 on	 the	 modeling	
language	
•  Independent	 methodology	 	

• Benefits	 in	 verifying	 	
•  Incomplete	 specifica9ons	
•  Analysis	 of	 different	 alterna9ves	
•  Adap9ve	 systems	
•  Hierarchical	 specifica9ons	
•  Composite	 states	 can	 be	 considered	 as	 transparent	 states	

On-‐going	 and	 Future	 Work	
• Op9mizing	 the	 current	 verifica9on	 algorithm	
•  Op9mize	 the	 AND-‐state	 management	
•  Efficiently	 remove	 the	 no-‐side	 effect	 assump9on	
	

•  Extending	 the	 verifica9on	 and	 the	 proper9es	
•  Consider	 also	 operators	 AX	 and	 EX	
•  Deal	 with	 metric	 operators	
•  Add	 9med	 transi9ons	 	

