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Requirements Patterns

Domain-specific patterns

— The majority of patterns are domain specific [RePa ‘11, ‘12, '13]
Patterns for easing requirements elicitation

— Cliches [Rubenstein and Waters, TSE ‘91]

— Domain models [Sutcliffe and Maiden, TSE ‘98]
Feature interfaces

— Everything about a feature is revealed [Jackson and Zave, TSE
‘98]

— Features interact solely through a shared context [Apel et. al.,
ICMT ‘09]

— Aspect-aware interfaces provide an interface for aspect modules
[Aldrich, ECOOP '05]

THE PATTERN
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Pattern
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Pattern

Green

« Feature affects its
environment

Yellow

« Environment can affect
feature (e.g., user can
change feature settings)
Red

« Feature monitors
environment

describes a feature’s essential \
requirements (e.g., the feature
affecting the environment)
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Inactive State Extensions
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Differentiate between user enabling actions and environment
enabling conditions

Distinguish between ordered enabling processes and processes
where ordering does not matter
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THE INTERFACE
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* Most inter-feature references are to the
high-level behaviour modes
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Environment . . .
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- ¢ Thus, the feature interface is generic to all
features when the pattern is widely used
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Example

Existing Text: [FeatureX_Fail] flag shall be set to true when FeatureY is in fail state...

in(FeatureY.Failed) in(FeatureY.Failed)

Feature X FeatureY
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EVALUATION
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Case Study Methodology

* The pattern was designed by examining five production-grade
features

* Two rounds of verification and refinement were performed
using an additional 16 features

21

Case Study

* Examined the complete requirements of features to
determine if they could be modelled using the pattern

* Also looked at inter-feature references and determined if they
reference only public information or private information

21
Z features can be modelled using the pattern

50
; inter-feature references use the public interface
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User Study
(not reported in paper)

Performed a user study with 12 participants with varying levels
of experience with state-machine modelling

* Three participant groups: Control (C), Pattern (P), Pattern
+Interface (PI)

* Provided each participant with a tutorial

* Asked to answer questions about a provided model with
pattern (for P and PI groups) or without pattern (C group)

* Asked to create a model from a textual description
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User Study: Reviewing Models

Participants with
correct answers
(#/4)
Model Comprehension Questions PI|P|C
List all environmental conditions to activate feature 0 210
List all user actions to activate feature 4 4 |1
List all references to other features 4 311
List all states in which the feature affects environment | 4 3|2
Describe the failure process 4 313
What is the name of the initial state 4 313
Average 3313 | 1.7
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User Study: Specifying Models

Correctness of written model: — -
Participants with correct

behaviour (#/4)

Model behaviour PI | P

Q

References related feature correctly
Includes all enabling conditions

Correct inactive behaviour

Correct deactivation conditions

Correct deactivation behaviour

Correct controlling/monitoring behaviour
Correct failing sequence
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Conclusion

* We propose a pattern for modelling state-machine-based
feature requirements and an interface to features

* The pattern seems to provide several benefits:

General enough to be applied to many features

The interface provides a generic method to reference features

The pattern and interface improve the readability of state-
machine models

The pattern and interface improve the correctness of written
models
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Evaluation: Threats to Validity

* (Case Study
— All features were gathered from one domain in one company
— The pattern creator performed the case study

* User Study
— Only 12 participants, split into 3 groups
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