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Motivation

* Modern software systems are often developed in an
agile fashion

* At each step the model of the system b i qudatrin e
is incomplete ... | f \

* Perform verification at each iteration k J\

* Wait until the end to verify the system

* Make assumptions on the missing parts before verifying

How to perform verification
... efficiently and automatically
3 7 at each iteration?




AGaVE: AGile Verification
Environment

Verification technique

* to check whether a specification satisfies a given
property

* to (automatically) generate sub-properties that the
missing components have to respect




Approach overview
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Statecharts

e Statecharts extend finite state machines with
* Hierarchy

* Concurrency

* Formally, S = {QlJq,.(a¢} St, p, ©
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Statecharts

e Statecharts extend finite state machines with
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Statecharts

e Statecharts extend finite state machines with
* Hierarchy

* Concurrency

* Formally, S =<Q, q,, g;, St, p, T
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Path-qCTL

e qCTL = qualitative CTL
* Path-qCTL = gCTL + operator on a finite path
* Its syntax is defined as

> ¢A¢|~¢|E¢u¢|EG¢|p

* E,G¢ = “There exists a path that reaches the final state
in which ¢ always holds”

* Example
* ¢ =-E(-permit U crossing)




The Verification Algorithm
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ILTS (with initial and final states)

* LTS on an alphabet AP =<Q, T, L)
* Q = finite set of states CJD—'Q
T ©£Q x Q= transition relation
* L: Q - »(AP) = labeling function @
* Incomplete LTS on an alphabet AP =<Q, T, L)

e Qis partitioned in regular and transparent states
* Transparent states represent components
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From Statecharts to ILTS

Translate Statecharts in ILTS

1. Preprocess transparent states

From a state to a transition



From Statecharts to ILTS

Translate Statecharts in ILTS

Preprocess transparent states
2. Eliminate AND-states

e states = cartesian product of the states of the
sub-Statecharts

* Transitions = all possible interleaving steps



From Statecharts to ILTS

Translate Statecharts in ILTS

\

1. Preprocess transparent states
2. Eliminate AND-states

Preprocessing /

3. Build the ILTS structure

Statechart transitions become ILTS states




From Statecharts to ILTS
/1. Preprocess transparent states b

2. Eliminate AND-states
\_ Preprocessing /

Translate Statecharts in ILTS

3. Build the ILTS structure

Label the ILTS

* Event = label
* Values assigned by actions = label
 Unchanged values are propagated

e Split of states
* Assumption of no-side effect for transparent states
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The Verification Algorithm
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Veritying ILTS

Model-Check ILTS

* Formulae are processed by navigating their
parsing tree from the leaves to the root

* Labeling procedure as in explicit model checking

* Ep, U0, E%)GCLIJ)%I)
1YP,




The Verification Algorithm
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Experimental Results
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* Prototype verification
tool

e Java standalone
application

* Experiments

 Railway crossing case
study

* Traditional approaches
check the whole system
at each step

e AGaVE checks the new
components against the
new constraints




Conclusion

* AGaVE = AGile Verification Environment
* Verification technique dependent on the modeling
language
* Independent methodology
* Benefits in verifying
* Incomplete specifications
* Analysis of different alternatives
* Adaptive systems
* Hierarchical specifications

* Composite states can be considered as transparent states




On-going and Future Work

* Optimizing the current verification algorithm
* Optimize the AND-state management
* Efficiently remove the no-side effect assumption

* Extending the verification and the properties
* Consider also operators AX and EX

e Deal with metric operators
* Add timed transitions




