
Ongoing Software
Development without

Classical Requirements

Thomas A. Alspaugh and Walt Scacchi
University of California, Irvine

Without requirements,
one would expect ...

• Projects whose products fail to meet
stakeholder needs

• Or fail to be reliable, evolvable, or exhibit
other desired software qualities

• Schedule slips, budget overruns

• In extreme cases, failure to produce any
usable product at all

Yet open-source software
(OSS) development works

• GNU/Linux

• Apache HTTP server

• PostgreSQL database system

• Mozilla Firefox browser

• Eclipse development platform

• If these are the kinds of system you get from
not doing requirements ...

But not always
(though it’s hard to compare)

• Those systems are the exception; most OSS
projects do not flourish ...
but note that starting an OSS project is trivial

• Difficult to compare, but OSS projects may
fail at nearly twice the rate of CSS (closed-
source software) projects ...
but note that the criteria differ for CSS and OSS

• We don’t really have good data ...
but it’s the CSS data that is thin

A closed-source software
(CSS) development context

• System produced by a development group

• For a client and users outside that group

• Developers may not have domain expertise

• Development against a budget and schedule

• Requirements as client-developer contract

An open-source software
(OSS) development context

• System produced for developers’ own use

• They are stakeholders and domain experts

• You want it, you code it up and argue for it

• Strong emphasis on extensibility

• Much discussion, little central control

Without overt
requirements artifacts

or processes

“Classical Requirements”
for purposes of our study

• Requirements document or central
requirements repository

• Requirements preferentially described in
terms of the problem space rather than the
solution space

• Requirements processes for completeness,
internal consistency, and external consistency
with stakeholder needs and domain

Research questions

• RQ1: To what extent do OSS projects in fact
use Classical Requirements?

• RQ2: Where OSS projects do not use
Classical Requirements, what artifacts and
processes are used instead, if any?

Data
• Our previous work

• All results reported by other researchers
(five reports), with some data re-examined in its
original context

• Newly-collected data

• All are ongoing projects

• Twelve projects examined closely, others less so

What did we find?

• Immediately recognizable: Artifacts and processes
for feature requests and for bug reports

• Discussions on email lists, electronic bulletin boards

• Discussion focus: architecture, implementation

• Requirements considered at best indirectly, and
stated implicitly

One (1) self-described OSS
requirements document
• Firefox2 [2006], first reported by Noll [2008]

• High-level, non-specific provisionments (next slide):

• Subdivided, allocated to milestones, given
priorities; project management document

• We found no other OSS requirements document

Bon Echo will update its appearance to look and feel like a
modern native application on all platforms. Incremental polish
and refinement to the user interface will focus on improving
the usability and accessibility of primary product features.

A provisionment

• Points to an implementation, and sketches
the kind of behavior that is referred to

• “Go play with this implementation and see
what it does”

• Provisionments very widely used,
either as the statement itself
or as the starting point for a stated variation

A way of expressing,
not a kind of thing to express

• A feature request, a bug report, a software
quality: kinds of things to express

• A provisionment:
a way of expressing something

• The “something” can be a feature, a bug
report, a software quality ... or a requirement

Provisionments in use
“Have you tried tabbed browsing [in the Opera
web browser]? Now that I’ve tried it, I won’t go
back to windows everywhere. The idea is that
pages have their own tabbed windows. Instead of
juggling windows, you just click their tabs. The
beauty part is new pages open in the background,
just as you requested. The tab tells you when the
page is done loading. Then you just click over.
Shweet!”

(in a Mozilla newsgroup 1999, quoted by Noll 2007)

More provisionments

• “You could add a link to the existing
superbill page ...” (feature request in terms of a
stated difference from a specific version of the system)

• “I think that existing Firebug users would
complain if the Profiler is removed or
providing [sic] different kind of results.”
(could be proposing a requirement, stated negatively in
terms of specific version of the system)

Are provisionments ...
• advantageous? They can be, as a compact

representation of projected future complex
behaviors described in terms of current ones

• limited to OSS? No, we have seen them in CSS
development and heard reports from others

• good requirements? Not by classical standards;
they are solution-space not problem-space,
and they define in terms of an implementation

Study results

• (RQ1) Classical Requirements almost
completely absent from OSS projects

• (RQ2) Instead of Classical Requirements
artifacts, we saw provisionments

• (RQ2) Instead of Classical Requirements
processes, we saw (most commonly) solution-
space discussions of provisionments

Discussion

• Different means to achieve the same goals

• No definitive statement in one place of what
the system is or is not to do

• Much architecture/implementation discussion

• Requirements foresight, insight, creativity
perhaps replaced by lots of prototypes
produced quickly

Two ways from A to B

Re
qu
ire
m
en
t

prototypes

P
P

P

P
P

P
P

P

P

P

P

P

P

P

P
P

P

P
P

P

PP

P

P

P

P

P

P
P

P

P

P

P

P

P

P

P

P

P P

P

P

P

P

P

P

P

P

P

P

A

B

Re
qu
ire
m
en
t

A

B

Many fast prototypes
might even take you to C

Re
qu
ire
m
en
t

prototypes

P
P

P

P
P

P
P

P

P

P

P

P

P

P

P
P

P

P
P

P

PP

P

P

P

P

P

P P

P

P

P

P

P

P

PP
P

P

P

P

P

P

P

P

P

P

P

P

P

P

P P

P

P

P

P

P

P

P

P

P

P

A

B

C

Re
qu
ire
m
en
t

A

B

Ongoing Software
Development without

Classical Requirements

Thomas A. Alspaugh and Walt Scacchi
University of California, Irvine

