
1

Supporting Requirements Traceability
through Refactoring

Anas Mahmoud and Nan Niu,

Department of Computer Science and Engineering
Mississippi State University

E-mail: niu@cse.msstate.edu

July 17, 2013 @ RE

2

Software Traceability
 Definition

 the ability to describe and follow a stakeholder’s concern
throughout the software lifecycle [Gotel and Finkelstein,
RE 1994]

 Importance
 Recommended by IEEE Standard & SEI’s CMM
 Mandated by NASA, FDA, & FAA

 Value: “connecting the dots”
 Does the code satisfy the design?
 What is the change impact of a certain requirement?
 …
 Indispensable to many other software engineering tasks

RE 2011

2

3

Out of the Labyrinth [Gotel and Morris, RE 2011]

 How do other (mature) fields tackle tracing?
 Animal tracking, art provenance, epidemiology, food

traceability, luggage handling, metrology

Signs

Tracing

Track

4

IR-Based Automated Traceability

Tracing

<Patient>

<Ill>

<Prescription>

<Hospital>

3

5

Problem #1: Missing Signs

6

Missing Signs in Code Base

<Patient>

<Ill>

<Prescription>

<Hospital>

<i>
<i> <x>

<x> <x>

<x>
<Patient>

<Ill> <Hospital>

<i>
<i> <x>

<x> <x>

<x>

4

7

Problem #2: Misplaced Signs

<Patient>

<Ill>

<Prescription>

<Hospital>

<Patient>

<Ill> <Hospital>

<Patient>

<Ill>

<Computer>

<Hospital>

<Patient>

<Ill> <Hospital>

<Patient>

<Ill>

<Computer>

<Hospital>

<Patient>

<Ill> <Hospital>

8

Problem #3: Duplicated Signs

<Patient>

<Ill>

<Prescription>

<Hospital>

<i>
<i> <x>

<x> <x>

<Patient>

<Ill>

<Prescription>

<Hospital>

<Hospital>
<Prescription> <Patient>

<Ill> <Patient>

Tracing

?

5

9

Outline
 Introduction

 Fundamentals: sign  track  trace
 Challenges: (1) Missing signs; (2) Misplaced signs; and (3)

Duplicated signs
 One root cause: software evolution

 Central hypothesis

 Experimental evaluation

 Concluding remarks

 Refactoring can help reverse the effect of discontinued
and distorted signs, and thus can systematically re-
establish track in the software system

10

Refactoring
 What?

 Behavior-preserving transformations that improve the
internal structure of the code
 Improving maintainability, reusability, understandability, etc.

 Why can refactoring help?
 Refactoring works on the informal aspects of the code

base (as opposed to formal runtime behaviors)
 IR-based requirements tracing also works on the informal

aspects (as opposed to formal semantics)

 How can refactoring help?
Problem Missing signs Misplaced signs Duplicated signs
Refactoring Restore information Move information Remove information

6

11

Refactoring Classification: A Traceability Perspective

A useful source: http://refactoring.com

Problem Missing signs Misplaced signs Duplicated signs
Refactoring Restore information Move information Remove information

Sample
Refactoring
Techniques

1) Rename Identifier
2) Add Parameter
3) Split Temporary
Variable
…

1) Move Method
2) Move Parameter
3) Push Down Field
4) Push Down
Method
…

1) Extract Method
2) Decompose
Conditional
3) Parameterize
Method
…

RI (Rename Identifier), MM (Move Method), and EM (Extract Method) as
representative techniques to fulfill refactoring’s potentials in each category

Key criteria to be “representative”: (i) coverage, (ii) granularity, and
(iii) automation

12

RI to Restore Missing Signs
 Rename Identifier

 Renaming an identifier to give it a more relevant name

 Our operationalizations
 Manually identify the following “bad smells”:

 identifier with less than 4-character length, e.g., HCP 
HealthCarePresonnel

 identifier including a special word, e.g., PnString 
PatientNameString

 identifier with generic names, e.g., import 
importPatientRecords

 Semi-automatically define name expansions and
replacements

 Automatically apply refactoring in Eclipse 4.2.1 to ensure
correctness and consistency

7

13

MM to Correct Misplaced Signs
 Move Method

 To reduce coupling and increase cohesion

 Our operationalizations
 Semi-automatically identify the “feature envy” bad

smells:
 If method M1 accesses way more fields and other methods in

class C2 than its own class C1, then method M1 should probably be
placed in C2 rather than C1 [Tsantalis and Chatzigeorgiou, TSE’09]

 Automatically apply refactoring in Eclipse 4.2.1 to ensure
correctness and consistency

14

EM to Remove Duplicated Signs
 Extract Method

 To reduce code clones (duplicates) and make them more
modular

 Our operationalizations
 Automatically detect “code clones” by employing the SDD

tool (wiki.eclipse.org/Duplicated_code_detection_tool_(SDD))
 Semi-automatically define the name of the “extracted

method” and the class that the “extracted method”
belongs to

 Automatically apply refactoring in Eclipse 4.2.1 to ensure
correctness and consistency

8

15

Outline
 Introduction

 Fundamentals: sign  track  trace
 Challenges: (1) Missing signs; (2) Misplaced signs; and (3)

Duplicated signs
 One root cause: software evolution

 Central hypothesis
 Refactoring can help reverse the effect of discontinued

and distorted signs, and thus can systematically re-
establish track in the software system

 Experimental evaluation

 Concluding remarks

16

Experimental Design

requirements-
to-class traces

Existing
Artifacts

Software
Repository

Retrieved
Results

Concern To
Be Traced specifies

retrieving being vetted by

indexing

searching

Study of
methods

Study of
analysts

Refactoring
(RI, MM, EM)

9

17

Result: How broad are refactorings’ impacts?

E: # of affected entities
C: # of affected classes in each system
C’: # of affected classes in the gold standard

iTrust eTour WDS
E (total) 299 116 521

18

Results: Retrieval Effectiveness and Browsability

10

19

Summary and Limitations
 Refactorings

 RI (rename identifier) had the most positive effects, though the
WDS’s effect was not statistically significant
 Restoring information essentially ameliorates the vocabulary mismatch

problem & refactoring represents an internal way of handling the problem
(as opposed to external thesaurus or query expansion)

 MM (move method) had the least influence
 MM’s effect is local and limited

 EM (extract method) had an overall negative impact on the
performance, e.g., recall was significantly reduced
 Duplicated signs play a positive role in tracing, as redundancy implies

reliability

 Outdated req.s based on code changes [Ben Charrada et al., RE’12]

 Major threats to validity
 Only 3 refactorings were experimented (1 in each category) and were

tested independently
 Granularity level (requirements-to-class) was fixed

20

Outline
 Introduction

 Fundamentals: sign  track  trace
 Challenges: (1) Missing signs; (2) Misplaced signs; and (3)

Duplicated signs
 One root cause: software evolution

 Central hypothesis
 Refactoring can help reverse the effect of discontinued

and distorted signs, and thus can systematically re-
establish track in the software system

 Experimental evaluation

 Concluding remarks

11

21

Back to the Nature
Restoring Lost Traceability Tracks through Refactoring

<Patient>
<Hospital>

<Prescription> <Ambulance>

<xy1234>

“An analysis of the requirements traceability
problem” [Gotel and Finkelstein, RE’94]

“Out of the labyrinth: leveraging other
disciplines for requirements

traceability” [Gotel and Morris, RE’11]

“The quest for ubiquity: a roadmap for
software and systems traceability” [Gotel et

al., RE’12]

