
1

Supporting Requirements Traceability
through Refactoring

Anas Mahmoud and Nan Niu,

Department of Computer Science and Engineering
Mississippi State University

E-mail: niu@cse.msstate.edu

July 17, 2013 @ RE

2

Software Traceability
 Definition

 the ability to describe and follow a stakeholder’s concern
throughout the software lifecycle [Gotel and Finkelstein,
RE 1994]

 Importance
 Recommended by IEEE Standard & SEI’s CMM
 Mandated by NASA, FDA, & FAA

 Value: “connecting the dots”
 Does the code satisfy the design?
 What is the change impact of a certain requirement?
 …
 Indispensable to many other software engineering tasks

RE 2011

2

3

Out of the Labyrinth [Gotel and Morris, RE 2011]

 How do other (mature) fields tackle tracing?
 Animal tracking, art provenance, epidemiology, food

traceability, luggage handling, metrology

Signs

Tracing

Track

4

IR-Based Automated Traceability

Tracing

<Patient>

<Ill>

<Prescription>

<Hospital>

3

5

Problem #1: Missing Signs

6

Missing Signs in Code Base

<Patient>

<Ill>

<Prescription>

<Hospital>

<i>
<i> <x>

<x> <x>

<x>
<Patient>

<Ill> <Hospital>

<i>
<i> <x>

<x> <x>

<x>

4

7

Problem #2: Misplaced Signs

<Patient>

<Ill>

<Prescription>

<Hospital>

<Patient>

<Ill> <Hospital>

<Patient>

<Ill>

<Computer>

<Hospital>

<Patient>

<Ill> <Hospital>

<Patient>

<Ill>

<Computer>

<Hospital>

<Patient>

<Ill> <Hospital>

8

Problem #3: Duplicated Signs

<Patient>

<Ill>

<Prescription>

<Hospital>

<i>
<i> <x>

<x> <x>

<Patient>

<Ill>

<Prescription>

<Hospital>

<Hospital>
<Prescription> <Patient>

<Ill> <Patient>

Tracing

?

5

9

Outline
 Introduction

 Fundamentals: sign track trace
 Challenges: (1) Missing signs; (2) Misplaced signs; and (3)

Duplicated signs
 One root cause: software evolution

 Central hypothesis

 Experimental evaluation

 Concluding remarks

 Refactoring can help reverse the effect of discontinued
and distorted signs, and thus can systematically re-
establish track in the software system

10

Refactoring
 What?

 Behavior-preserving transformations that improve the
internal structure of the code
 Improving maintainability, reusability, understandability, etc.

 Why can refactoring help?
 Refactoring works on the informal aspects of the code

base (as opposed to formal runtime behaviors)
 IR-based requirements tracing also works on the informal

aspects (as opposed to formal semantics)

 How can refactoring help?
Problem Missing signs Misplaced signs Duplicated signs
Refactoring Restore information Move information Remove information

6

11

Refactoring Classification: A Traceability Perspective

A useful source: http://refactoring.com

Problem Missing signs Misplaced signs Duplicated signs
Refactoring Restore information Move information Remove information

Sample
Refactoring
Techniques

1) Rename Identifier
2) Add Parameter
3) Split Temporary
Variable
…

1) Move Method
2) Move Parameter
3) Push Down Field
4) Push Down
Method
…

1) Extract Method
2) Decompose
Conditional
3) Parameterize
Method
…

RI (Rename Identifier), MM (Move Method), and EM (Extract Method) as
representative techniques to fulfill refactoring’s potentials in each category

Key criteria to be “representative”: (i) coverage, (ii) granularity, and
(iii) automation

12

RI to Restore Missing Signs
 Rename Identifier

 Renaming an identifier to give it a more relevant name

 Our operationalizations
 Manually identify the following “bad smells”:

 identifier with less than 4-character length, e.g., HCP
HealthCarePresonnel

 identifier including a special word, e.g., PnString
PatientNameString

 identifier with generic names, e.g., import
importPatientRecords

 Semi-automatically define name expansions and
replacements

 Automatically apply refactoring in Eclipse 4.2.1 to ensure
correctness and consistency

7

13

MM to Correct Misplaced Signs
 Move Method

 To reduce coupling and increase cohesion

 Our operationalizations
 Semi-automatically identify the “feature envy” bad

smells:
 If method M1 accesses way more fields and other methods in

class C2 than its own class C1, then method M1 should probably be
placed in C2 rather than C1 [Tsantalis and Chatzigeorgiou, TSE’09]

 Automatically apply refactoring in Eclipse 4.2.1 to ensure
correctness and consistency

14

EM to Remove Duplicated Signs
 Extract Method

 To reduce code clones (duplicates) and make them more
modular

 Our operationalizations
 Automatically detect “code clones” by employing the SDD

tool (wiki.eclipse.org/Duplicated_code_detection_tool_(SDD))
 Semi-automatically define the name of the “extracted

method” and the class that the “extracted method”
belongs to

 Automatically apply refactoring in Eclipse 4.2.1 to ensure
correctness and consistency

8

15

Outline
 Introduction

 Fundamentals: sign track trace
 Challenges: (1) Missing signs; (2) Misplaced signs; and (3)

Duplicated signs
 One root cause: software evolution

 Central hypothesis
 Refactoring can help reverse the effect of discontinued

and distorted signs, and thus can systematically re-
establish track in the software system

 Experimental evaluation

 Concluding remarks

16

Experimental Design

requirements-
to-class traces

Existing
Artifacts

Software
Repository

Retrieved
Results

Concern To
Be Traced specifies

retrieving being vetted by

indexing

searching

Study of
methods

Study of
analysts

Refactoring
(RI, MM, EM)

9

17

Result: How broad are refactorings’ impacts?

E: # of affected entities
C: # of affected classes in each system
C’: # of affected classes in the gold standard

iTrust eTour WDS
E (total) 299 116 521

18

Results: Retrieval Effectiveness and Browsability

10

19

Summary and Limitations
 Refactorings

 RI (rename identifier) had the most positive effects, though the
WDS’s effect was not statistically significant
 Restoring information essentially ameliorates the vocabulary mismatch

problem & refactoring represents an internal way of handling the problem
(as opposed to external thesaurus or query expansion)

 MM (move method) had the least influence
 MM’s effect is local and limited

 EM (extract method) had an overall negative impact on the
performance, e.g., recall was significantly reduced
 Duplicated signs play a positive role in tracing, as redundancy implies

reliability

 Outdated req.s based on code changes [Ben Charrada et al., RE’12]

 Major threats to validity
 Only 3 refactorings were experimented (1 in each category) and were

tested independently
 Granularity level (requirements-to-class) was fixed

20

Outline
 Introduction

 Fundamentals: sign track trace
 Challenges: (1) Missing signs; (2) Misplaced signs; and (3)

Duplicated signs
 One root cause: software evolution

 Central hypothesis
 Refactoring can help reverse the effect of discontinued

and distorted signs, and thus can systematically re-
establish track in the software system

 Experimental evaluation

 Concluding remarks

11

21

Back to the Nature
Restoring Lost Traceability Tracks through Refactoring

<Patient>
<Hospital>

<Prescription> <Ambulance>

<xy1234>

“An analysis of the requirements traceability
problem” [Gotel and Finkelstein, RE’94]

“Out of the labyrinth: leveraging other
disciplines for requirements

traceability” [Gotel and Morris, RE’11]

“The quest for ubiquity: a roadmap for
software and systems traceability” [Gotel et

al., RE’12]

