
RE@21	

Analyzing	
 So1ware	
 Requirements	
 Errors	
 in	

Safety-­‐Cri=cal,	
 Embedded	
 Systems	

	

Robyn	
 Lutz	
 	

Dept.	
 of	
 Computer	
 Science	

Iowa	
 State	
 University,	
 Ames	
 IA	

&	
 formerly	
 Jet	
 Propulsion	
 Lab,	
 Pasadena,	
 CA	

	

RE’13,	
 PUC-­‐Rio	
 de	
 Janeiro,	
 Brazil	

July	
 17,	
 2013	

	

	

	
 	
 Some	
 of	
 this	
 research	
 was	
 performed	
 at	
 ISU	
 and	
 supported	
 by	
 NSF	
 0541163,	
 0916275,	
 	

&	
 1247051,	
 and	
 some	
 was	
 performed	
 at	
 JPL/Caltech	
 and	
 supported	
 by	
 NASA	
 OSMA	
 SARP.	
 	

Way back in 1993

Robyn	
 Lutz,	
 RE'13	
 2	

The first Intel Pentium chips are shipped

“A	
 Whole	
 New	
 World”	
 	

wins	
 the	
 Oscar	
 for	
 Best	
 Song	

The Mosaic browser is released

The	
 first	
 Beanie	
 Babies	
 appear	

RE’93 is held in San Diego, CA

sandiego.org	

wikipedia	

wikipedia	

wikipedia	

Old news now

Robyn	
 Lutz,	
 RE'13	
 3	

Missing and misunderstood software
requirements really do jeopardize safety-

critical systems (spacecraft).	

	

	

	

	

	

twicer.com	

Approach & Findings in ‘93

•  Examined 387 software errors discovered during integration &
system testing on the Voyager and Galileo spacecraft, about half of
which were safety-critical

•  Used Nakajo & Kune [TSE’91] classification:
 software error ß human error ß process flaw

•  Found prevalent error mechanisms producing safety-critical errors:

–  Missing requirements (e.g., for reasonableness checks on input
data, due to incomplete documentation)

–  Misunderstood requirements (e.g., of hardware/software
interfaces, due to lack of communication between teams)

Robyn	
 Lutz,	
 RE'13	
 4	

Images	
 courtesy	
 of	
 NASA/JPL-­‐Caltech	

More specifically

•  “Difficulties with requirements is the key root cause of the
safety-related software errors that have persisted until
integration & system testing.”

•  Safety-related software errors have different causes from
non-safety-related software errors

•  We can make spacecraft safer by understanding &
removing the prevalent causes of those critical errors

Robyn	
 Lutz,	
 RE'13	
 5	

Example of a software requirements error
(from Mars Reconnaissance Orbiter, launched

2005, still operational)

Robyn	
 Lutz,	
 RE'13	
 6	

The transponder is the spacecraft receiver/transmitter used for
telecommunications.

During system testing, a false assumption regarding the
transponder was discovered, resulting in new requirements
knowledge. It had been assumed that the transponder state always
reflected the state of the carrier, i.e., locked or unlocked. However,
it was found in system testing that these values could be
temporarily out of synchronization when the carrier detection was
transitioning between locked and unlocked.

The consequence was that the flight software requirement for fault-
protection checking of the transponder telemetry had to be revised.

Nichelle	
 Nichols,	
 aka	
 Lt.	
 Uhura	

• 	
 Voyager	
 1	
 &	
 2	
 launched	
 1977:	
 	
 visited	
 4	
 planets	

• 	
 Unprecedented	
 discoveries	
 (moons,	
 rings,	
 	
 	

	
 	
 	
 volcanoes,	
 solar	
 wind)	

• 	
 Con=nue	
 to	
 be	
 ac=ve	
 science	
 missions	

• 	
 Farthest	
 man-­‐made	
 objects	
 (~11	
 billion	
 miles)	

• Original	
 mission	
 was	
 extended	
 to	
 visit	

	
 Uranus	
 &	
 Neptune,	
 now	
 planned	
 to	
 >	
 2020	

• Failed	
 receiver	
 on	
 Voy2	
 changed	
 requirements	

• Power	
 deple=on	
 changes	
 requirements	

Example of why we care: Voyager
Long-lived: enduring, tenacious, robust

Images	
 courtesy	
 NASA/JPL-­‐Caltech	

Robyn	
 Lutz,	
 RE'13	
 7	

Earth	

Because requirements change:

A sturdy foundation
	

	

Some	
 work	
 that	
 makes	
 our	
 systems	
 safer:	

	

	

	

•  Le=er	
 and	
 van	
 Lamsweerde	
 [TSE’00]	
 obstacle	
 analysis	
 pacerns	

•  Heimdahl	
 [FOSE’07],	
 called	
 out	
 difficul=es	
 with	
 data-­‐driven,	
 configurable	
 systems	
 	

•  Habli	
 and	
 Kelly	
 [SPLC’07]	
 safety	
 cases	
 for	
 product	
 lines	

•  Jackson,	
 Thomas,	
 Millec,	
 eds.	
 [‘07],	
 report	
 on	
 so1ware	
 for	
 dependable	
 systems	

•  Strunk	
 and	
 Knight[‘08],	
 assurance	
 cases	
 for	
 dependable	
 systems	

•  Hamill	
 and	
 Goseva-­‐Popstojanova	
 [TSE’09],	
 requirements	
 faults	
 are	
 common	

•  Miller,	
 	
 Whalen,	
 Cofer	
 [CACM’10]	
 experience	
 model	
 checking	
 safety-­‐cri=cal	
 so1ware	

•  Sabetzadeh	
 et	
 al.	
 [HASE’10]	
 focus	
 on	
 hardware/so1ware	
 interfaces	

•  Whicle,	
 Sawyer,	
 Bencomo,	
 Cheng	
 and	
 Bruel	
 ,	
 [REJ’10],	
 requirements	
 for	
 self-­‐adap=ve	

systems	
 	
 	

•  Leveson,	
 Engineering	
 a	
 Safer	
 World	
 [‘12],	
 broader	
 organiza=onal	
 context	
 	

•  Gay	
 et	
 al.,	
 [‘12]	
 op=miza=on	
 over	
 requirements	
 models	

•  Liclewood	
 &	
 Rushby	
 [TSE’12],	
 reliability	
 claims	

	

Robyn	
 Lutz,	
 RE'13	
 8	

cp-­‐journal.com	

Our more recent work #1:	

Analyzing software errors to understand ongoing
requirements discovery in safety-critical systems

Robyn	
 Lutz,	
 RE'13	
 9	

Analyzed ~200 problem reports ranked critical on
7 launched spacecraft + ~450 on Mars Exploration Rover
[Lutz & Mikulski, ‘04, ‘05].
	
 	

Both sets showed 2 kinds of requirements discovery:
•  Missing/new requirement, or unknown interaction
•  Requirements confusion/misunderstanding by testers
 or operators

Both sets displayed 4 ways of
handling requirements discovery:
•  Software change
•  Operational procedure change
•  Document change
•  No change (software behaved

correctly)

Lessons learned:
•  Plan for life-long RE
•  Use reports of near-misses &
 false positives as a crystal ball
•  Flag patterns of confusion
•  Change software, not procedure
•  Take a product-line perspective

NASA/JPL-­‐Caltech	

Our more recent work #2
Software Requirements Errors in Safety-Critical Product Lines

Robyn	
 Lutz,	
 RE'13	
 10	

A flight-software product line has been used on 9 spacecraft managed by
JPL, including GRAIL (mapped the moon in 2012) and Juno (launched
2011 for 5-year journey to Jupiter; Earth flyby for gravity assist on Oct. 9)

We used requirements information in problem reports from previous
spacecraft to avoid recurrence of those problems on the next spacecraft.
[Lutz, Lavin, Lux, Peters, Rouquette, 2013].

 Lesson learned: Problem reports are a product line asset.

Images	
 courtesy	
 NASA/JPL-­‐Caltech	
 Courtesy	
 Classroom	
 Clipart	

Findings transfer to other high-integrity systems
•  Rare events do occur & must be accounted for in the requirements
•  Overly strict requirements unnecessarily add complexity & consequent

risk
•  Requirements always change after launch—and should
•  Model-based engineering & good traceability reduce loss of knowledge

over the lifetime of a long-lived system
•  Using information in defect reports from previous product-line systems

can reduce the next system’s requirements-related defects
•  Safety-focused checklists work & have the advantage that they tend to

be updated
•  There is no substitute for expertise & the power of a committed team
	

Robyn	
 Lutz,	
 RE'13	

Siemens	
 Medical	

RE@21

•  Missing and misunderstood software requirements still
jeopardize safety-critical systems

•  We still don’t know much about the distinction in causes of
safety-critical & non-safety-critical errors

•  New kinds of safety-critical systems are bringing new RE
challenges
 What does it mean to specify and validate requirements
 on programmable DNA self-assembled nanosystems?

Robyn	
 Lutz,	
 RE'13	
 12	

flickr.com	

