
RE@21	
Analyzing	 So1ware	 Requirements	 Errors	 in	

Safety-‐Cri=cal,	 Embedded	 Systems	
	

Robyn	 Lutz	 	
Dept.	 of	 Computer	 Science	

Iowa	 State	 University,	 Ames	 IA	
&	 formerly	 Jet	 Propulsion	 Lab,	 Pasadena,	 CA	

	
RE’13,	 PUC-‐Rio	 de	 Janeiro,	 Brazil	

July	 17,	 2013	
	
	
	 	 Some	 of	 this	 research	 was	 performed	 at	 ISU	 and	 supported	 by	 NSF	 0541163,	 0916275,	 	

&	 1247051,	 and	 some	 was	 performed	 at	 JPL/Caltech	 and	 supported	 by	 NASA	 OSMA	 SARP.	 	

Way back in 1993

Robyn	 Lutz,	 RE'13	 2	

The first Intel Pentium chips are shipped

“A	 Whole	 New	 World”	 	
wins	 the	 Oscar	 for	 Best	 Song	

The Mosaic browser is released

The	 first	 Beanie	 Babies	 appear	

RE’93 is held in San Diego, CA

sandiego.org	

wikipedia	

wikipedia	

wikipedia	

Old news now

Robyn	 Lutz,	 RE'13	 3	

Missing and misunderstood software
requirements really do jeopardize safety-

critical systems (spacecraft).	
	
	
	
	
	

twicer.com	

Approach & Findings in ‘93

•  Examined 387 software errors discovered during integration &
system testing on the Voyager and Galileo spacecraft, about half of
which were safety-critical

•  Used Nakajo & Kune [TSE’91] classification:
 software error ß human error ß process flaw

•  Found prevalent error mechanisms producing safety-critical errors:

–  Missing requirements (e.g., for reasonableness checks on input
data, due to incomplete documentation)

–  Misunderstood requirements (e.g., of hardware/software
interfaces, due to lack of communication between teams)

Robyn	 Lutz,	 RE'13	 4	
Images	 courtesy	 of	 NASA/JPL-‐Caltech	

More specifically

•  “Difficulties with requirements is the key root cause of the
safety-related software errors that have persisted until
integration & system testing.”

•  Safety-related software errors have different causes from
non-safety-related software errors

•  We can make spacecraft safer by understanding &
removing the prevalent causes of those critical errors

Robyn	 Lutz,	 RE'13	 5	

Example of a software requirements error
(from Mars Reconnaissance Orbiter, launched

2005, still operational)

Robyn	 Lutz,	 RE'13	 6	

The transponder is the spacecraft receiver/transmitter used for
telecommunications.

During system testing, a false assumption regarding the
transponder was discovered, resulting in new requirements
knowledge. It had been assumed that the transponder state always
reflected the state of the carrier, i.e., locked or unlocked. However,
it was found in system testing that these values could be
temporarily out of synchronization when the carrier detection was
transitioning between locked and unlocked.

The consequence was that the flight software requirement for fault-
protection checking of the transponder telemetry had to be revised.

Nichelle	 Nichols,	 aka	 Lt.	 Uhura	

• 	 Voyager	 1	 &	 2	 launched	 1977:	 	 visited	 4	 planets	
• 	 Unprecedented	 discoveries	 (moons,	 rings,	 	 	
	 	 	 volcanoes,	 solar	 wind)	
• 	 Con=nue	 to	 be	 ac=ve	 science	 missions	
• 	 Farthest	 man-‐made	 objects	 (~11	 billion	 miles)	

• Original	 mission	 was	 extended	 to	 visit	
	 Uranus	 &	 Neptune,	 now	 planned	 to	 >	 2020	
• Failed	 receiver	 on	 Voy2	 changed	 requirements	
• Power	 deple=on	 changes	 requirements	

Example of why we care: Voyager
Long-lived: enduring, tenacious, robust

Images	 courtesy	 NASA/JPL-‐Caltech	

Robyn	 Lutz,	 RE'13	 7	
Earth	

Because requirements change:

A sturdy foundation
	
	
Some	 work	 that	 makes	 our	 systems	 safer:	
	
	
	
•  Le=er	 and	 van	 Lamsweerde	 [TSE’00]	 obstacle	 analysis	 pacerns	
•  Heimdahl	 [FOSE’07],	 called	 out	 difficul=es	 with	 data-‐driven,	 configurable	 systems	 	
•  Habli	 and	 Kelly	 [SPLC’07]	 safety	 cases	 for	 product	 lines	
•  Jackson,	 Thomas,	 Millec,	 eds.	 [‘07],	 report	 on	 so1ware	 for	 dependable	 systems	
•  Strunk	 and	 Knight[‘08],	 assurance	 cases	 for	 dependable	 systems	
•  Hamill	 and	 Goseva-‐Popstojanova	 [TSE’09],	 requirements	 faults	 are	 common	
•  Miller,	 	 Whalen,	 Cofer	 [CACM’10]	 experience	 model	 checking	 safety-‐cri=cal	 so1ware	
•  Sabetzadeh	 et	 al.	 [HASE’10]	 focus	 on	 hardware/so1ware	 interfaces	
•  Whicle,	 Sawyer,	 Bencomo,	 Cheng	 and	 Bruel	 ,	 [REJ’10],	 requirements	 for	 self-‐adap=ve	

systems	 	 	
•  Leveson,	 Engineering	 a	 Safer	 World	 [‘12],	 broader	 organiza=onal	 context	 	
•  Gay	 et	 al.,	 [‘12]	 op=miza=on	 over	 requirements	 models	
•  Liclewood	 &	 Rushby	 [TSE’12],	 reliability	 claims	
	

Robyn	 Lutz,	 RE'13	 8	

cp-‐journal.com	

Our more recent work #1:	
Analyzing software errors to understand ongoing
requirements discovery in safety-critical systems

Robyn	 Lutz,	 RE'13	 9	

Analyzed ~200 problem reports ranked critical on
7 launched spacecraft + ~450 on Mars Exploration Rover
[Lutz & Mikulski, ‘04, ‘05].
	 	
Both sets showed 2 kinds of requirements discovery:
•  Missing/new requirement, or unknown interaction
•  Requirements confusion/misunderstanding by testers
 or operators

Both sets displayed 4 ways of
handling requirements discovery:
•  Software change
•  Operational procedure change
•  Document change
•  No change (software behaved

correctly)

Lessons learned:
•  Plan for life-long RE
•  Use reports of near-misses &
 false positives as a crystal ball
•  Flag patterns of confusion
•  Change software, not procedure
•  Take a product-line perspective

NASA/JPL-‐Caltech	

Our more recent work #2
Software Requirements Errors in Safety-Critical Product Lines

Robyn	 Lutz,	 RE'13	 10	

A flight-software product line has been used on 9 spacecraft managed by
JPL, including GRAIL (mapped the moon in 2012) and Juno (launched
2011 for 5-year journey to Jupiter; Earth flyby for gravity assist on Oct. 9)

We used requirements information in problem reports from previous
spacecraft to avoid recurrence of those problems on the next spacecraft.
[Lutz, Lavin, Lux, Peters, Rouquette, 2013].

 Lesson learned: Problem reports are a product line asset.

Images	 courtesy	 NASA/JPL-‐Caltech	 Courtesy	 Classroom	 Clipart	

Findings transfer to other high-integrity systems
•  Rare events do occur & must be accounted for in the requirements
•  Overly strict requirements unnecessarily add complexity & consequent

risk
•  Requirements always change after launch—and should
•  Model-based engineering & good traceability reduce loss of knowledge

over the lifetime of a long-lived system
•  Using information in defect reports from previous product-line systems

can reduce the next system’s requirements-related defects
•  Safety-focused checklists work & have the advantage that they tend to

be updated
•  There is no substitute for expertise & the power of a committed team
	

Robyn	 Lutz,	 RE'13	
Siemens	 Medical	

RE@21

•  Missing and misunderstood software requirements still
jeopardize safety-critical systems

•  We still don’t know much about the distinction in causes of
safety-critical & non-safety-critical errors

•  New kinds of safety-critical systems are bringing new RE
challenges
 What does it mean to specify and validate requirements
 on programmable DNA self-assembled nanosystems?

Robyn	 Lutz,	 RE'13	 12	

flickr.com	

