
1

©
 S

eilevel, Inc. A
ll rights reserved

Top Tips You Can Apply
Immediately to Projects –
Highlights from the RE’13

Tutorials

©
 S

eilevel, Inc. A
ll rights reserved

Agenda:
6 tutorial overviews
Save questions for the end!

Implement Visual Models for Software
Requirements Immediately (Full Day)	

Joy Beatty and/or James
Hulgan	

Writing Good Requirements (Full day)	

Sarah Gregory	

Requirements Quality and Productivity
Improvement Based on Example Usage	

Marcelo Tueiv, Marcelo do
Carmo Coelho, Erica
Mourão da Silva	

Observational and experimental case study
research in requirements engineering:
Methodology and Examples (Half day)	
 Roel Wieringa	

Model-Based Systems Requirements (Half day - 3
hours).	

Bruel Jean-Michel and
Joao Araujo	

Applying Model Driven Engineering and Domain
Specific Languages to Requirements Engineering	

Bruce Trask and Angel
Roman	

2

©
 S

eilevel, Inc. A
ll rights reserved

Two Requirements Models Everyone Should Use
IEEE RE’13 Micro Tutorial

©
 S

eilevel, Inc. A
ll rights reserved

2 Models: Process Flows and RMMs
For each of the models, you will learn:

 -How To Create
 -Uses
 -Examples

How to incorporate requirements derived from
other models

Here’s what you’re going to get

"
"

"

3

©
 S

eilevel, Inc. A
ll rights reserved

Process Flow

Show business processes, not system
processes (but you can make System Flows too)
Use in elicitation sessions
Derive requirements from steps

©
 S

eilevel, Inc. A
ll rights reserved

Process flows have levels: L1, L2, and L3

Level 1
(L1)

ID = 1

Level 2
(L2)

ID = 1.2

Level 3
(L3)

ID = 1.2.7

Step
1.2.7.4

Step
1.2.5

4

©
 S

eilevel, Inc. A
ll rights reserved

Example L1 Process Flow

©
 S

eilevel, Inc. A
ll rights reserved

Example L2 Process Flow

5

©
 S

eilevel, Inc. A
ll rights reserved

Requirements Mapping Matrix (RMM)

Organize your requirements by other models
Derive requirements from other model
components
 Remember to keep it up to date

©
 S

eilevel, Inc. A
ll rights reserved

Create an RMM to map process steps to
requirements

 Add your steps to the matrix
 Add your requirements to
the matrix

6

©
 S

eilevel, Inc. A
ll rights reserved

Adding Columns for Elements of Objectives
Models Help You Control Scope

©
 S

eilevel, Inc. A
ll rights reserved

Take-away: RML Quick Reference

7

Landing Zone

Copyright © 2013, Intel Corporation

All rights reserved

Contact: sarah.c.gregory@intel.com

Copyright © 2010 Intel Corporation. All rights reserved. 14

The Landing Zone

A Landing Zone is a table that defines a “region” of
success for a product or project
The rows of the table contain the subset of requirements that
directly define success or failure (not all the requirements)

The columns of the table contain a range of performance levels;
usually, a Landing Zone covers the range between great success
(Outstanding) and failure avoidance (Minimum)

Landing Zones can be used in agile development to help define
success of an iteration or Scrum sprint

 Landing Zones focus attention on what will create success

8

Copyright © 2010 Intel Corporation. All rights reserved. 15

Landing Zone Usage

Landing Zones are useful for several things:
• Gain explicit consensus at the start of a project on the
definition of success

• Quantify the achievement levels required as an input to
feasibility and risk analysis

• Drive tradeoff discussions and decision making
throughout the project

• Monitor and communicate product attribute status to
decision forums and management during development

Copyright © 2010 Intel Corporation. All rights reserved. 16

Landing Zone Usage

Landing Zones help clarify decision authority for a
team:
Decisions that do not violate any row of the LZ are made by the
team as a normal part of their work

• So long as the team meets all LZ rows, that is success
Any decision that would cause any LZ row to be violated
requires ratification from a higher authority

• This would include falling below Minimum or a decision to
pursue something beyond Outstanding

Landing Zones can be created for platforms, components,
service offerings, user experiences, projects, etc.

9

Copyright © 2010 Intel Corporation. All rights reserved. 17

Exercise 4
Creating a Landing Zone

Instructions:

1.  Work individually or in small teams

2.  Create a landing zone for you next car purchase, vacation
or similar item of your choice; try to include some
functions and constraints in addition to rows describing
qualities and performance

3.  Be ready to share your work with the class when done

Skill taught: Create a simple landing zone for a product or project

Copyright © 2010 Intel Corporation. All rights reserved. 18

Landing Zone Length

A good Landing Zone is short enough to be comprehended
•  A reasonable guideline is two dozen rows at most, and one dozen

is better

•  The top-level Landing Zone contains only those topics that must
be reviewed regularly by upper management

•  Additional “child” Landing Zones can capture details and data on
other topics; Tabs of a spreadsheet work well for this

Landing Zone format may provide enough data for precedented, low-
risk requirements, but augment Landing Zone entries with full
requirements statements in a separate specification when needed

10

Copyright © 2010 Intel Corporation. All rights reserved. 19

Example:
Car Purchase Landing Zone

Attribute Minimum Target Outstanding
Price $27000 $20000 $17,500
Mileage (City) 18mpg 25mpg 35mpg
Seating 4 adults 5 adults 6 adults
Interior Noise at
65 mph 74dBA 65dBA 55dBA

Projected 3-year
Maintenance
Cost

$3000 $2000 $1500

Requirements based on examples
IBM Brazil - Requirements Center of Competence

Marcelo Tueiv – mtueiv@br.ibm.com
Erica Mourão da Silva – ericams@br.ibm.com
Marcelo do Carmo Coelho – mcarmo@br.ibm.com

IBM Requirements Center of Competence Brazil
July/2013

11

Requirements Team Challenge

How to be more productive / improve quality with:

  Time to Market / Cost Oriented?

  Different Project Approaches ? (e.g.: Smart Commerce + AD)

  Customer Methodologies?

  Industry & Offering Knowledge needed?

  Software Acquisitions?

  Suppliers integrations?

  One of a Kind Projects?

  Writting Communication Issues?

  Hiring New Employees every week?
21

22

Project Start, Blank Page

• Templates are white boards
• Try create Performance Rqmt from the scratch
• Try create Report UC from the scratch

• New Employees without robust guidance
• Training is not enough

• Teams take time to establish the same level of
granularity / quality

• Methods Examples are generic / out of a Context

• Lot of time spent in recurrent Requirements

..

12

23

Example Approach

• Example centered

• Approach focused on Reuse of well estabilished / robust Examples

• Not focused in cover all scenarios, but to be used as reference

• Implements our guidelines

• Recurrent Requirements (ex.: Login, Report, Search, Usability etc)

• Use of Requirements Techniques to estabilish good examples

• Questionnaires, Storyboards / Sketchs, UML Diagrams, Quality

Requirements Syntaxes

• Simple to use

24

Use of RE & Reuse Approaches

1.  Patterns

2.  Use Case Fragments

3.  Feature Model

4.  Industry Frameworks

5.  Visual Modeling

6.  Requirements Anti-Patterns

7.  Asset Based

8.  Others (e.g.: Problem Frames)

24

«include»

«extend»

13

25

Plan
1.  Understand Context / Identify Issues
2.  Define Goals
3.  Define Scope & Approaches
4.  Analyze Return of Investment
5.  Pilot Project
6.  Define Detailed Plan
7.  Train Requirements Engineers in Reuse
8.  Define Tools / Process
9.  Define Rewards Program
10.  Define Measurements

Requirements based on examples - Adoption Plan

26

Asset Repository - iRAM

As an Asset Consumer:
•  Browse Assets
•  Reuse Assets
•  Subscribe to Assets
•  Provide asset feedback using ratings
 and comments

As an Asset Producer:
•  Create Assets
•  Delete Assets
•  Update Assets
•  Monitor asset feedback and usage
•  Ensure assets are valuable and of high quality

26

14

Blue Sheets are used by practitioners to capture individual
contribution on project assignments – The results are
summarized in their Blue Cards

Blue Sheets
  Document the outcomes of a practitioner’s

deliverable assignments
  Require self-assessment of four key factors

–  Quality
–  Cycle Time
–  Speed
–  Reuse

  Are validated by the practitioner’s project lead
  Earn Blue Card Points based on meeting or beating

plan expectations

Blue Cards
  Aggregate completed Blue Sheets from the prior six

months
  Quantify a Practitioner’s contribution to the business –

across multiple projects – in terms of Quality, Cycle
Time, Speed and Reuse

  Highlight achievement relative to the broader
organization, based on Blue Card Points earned

  Provide an environment where individual
accomplishments can be distinguished

27

+3 Blue Card points for each Rated Component reused

+2 Blue Card points for each Reviewed Component reused

+1 Blue Card point for any other asset reused

28

Do – For Each Type of Requirements
1.  Define Examples Meta model
2.  Create Requirements Guideline
3.  Create Reuse Taxonomy (recurrent rqmnts)
4.  Requirements harvest (old projects)
5.  Review/Create Examples
6.  Package as Asset and Submit for Review
7.  Train BAs
8.  New Contributions

Requirements based on examples - Adoption Plan

15

29

Do – For Each Type of Requirements
1.  Define Examples Meta model
2.  Create Requirements Guideline
3.  Create Reuse Taxonomy (recurrent rqmnts)
4.  Requirements harvest (old projects)
5.  Review/Create Examples
6.  Package as Asset and Submit for Review
7.  Train BAs
8.  New Contributions

Requirements based on examples - Adoption Plan

30

Define Example Meta model

 Example

 Basic details

 Applicability

 Questionnaire

 Discussion

 UML Diagrams

 Sketch / Storyboard

 Anti Patterns

 Considerations for development / testing

 Related Examples

16

31

Do – For Each Type of Requirements
1.  Define Examples Meta model
2.  Create Requirements Guideline
3.  Create Reuse Taxonomy (recurrent rqmnts)
4.  Requirements harvest (old projects)
5.  Review/Create Examples
6.  Package as Asset and Submit for Review
7.  Train BAs
8.  New Contributions

Requirements based on examples - Adoption Plan

Importance of Guidelines for Reuse

• Definition of

  Style

  Granularity

  Syntax

  Implement Quality concerns (ambiguity,

 traceability, testability, completeness etc)

  Standardization

  Other concerns for each type of requirement

• Will be used as base for Requirements QA Checklist

• Robust Guidelines provide Guidance to Requirements team about Quality
Requirements

32

17

33

Do – For Each Type of Requirements
1.  Define Examples Meta model
2.  Create Requirements Guideline
3.  Create Reuse Taxonomy (recurrent rqmnts)
4.  Requirements harvest (old projects)
5.  Review/Create Examples
6.  Package as Asset and Submit for Review
7.  Train BAs
8.  New Contributions

Requirements based on examples - Adoption Plan

34

Do – For Each Type of Requirements
1.  Define Examples Meta model
2.  Create Requirements Guideline
3.  Create Reuse Taxonomy (recurrent rqmnts)
4.  Requirements harvest (old projects)
5.  Review/Create Examples
6.  Package as Asset and Submit for Review
7.  Train BAs
8.  New Contributions

Requirements based on examples - Adoption Plan

18

35

Do – For Each Type of Requirements
1.  Define Examples Meta model
2.  Create Requirements Guideline
3.  Create Reuse Taxonomy (recurrent rqrmnts)
4.  Requirements harvest (old projects)
5.  Review/Create Examples
6.  Package as Asset and Submit for Review
7.  Train BAs
8.  New Contributions

Requirements based on examples - Adoption Plan

36

Usability based on Examples

Questionnaire:
1.  What’s the max number of pages?
2.  What ‘s behaviour when no items are found? Is it expected to hide

paging options?
3.  What shortcuts can be used to navigate in pages?

Discussion:
The navigation bar tells the users the most important information about the list; how many

items there are, how many they see now and how to get to the rest. By placing the
navigation below the list it is there when users need it most: after scanning all items on the
page. Although paging is a very common and accepted way of interacting, the arrival of
Ajax technology has introduced new possibilities where paging is no longer needed. All
results are simply shown but only loaded as the user scrolls down. See for example the
Apple store's software section or Dzone

 Considerations for development / testing:
  Deletions of records can bring unexpected behavior of paging. More attention for test

these situations: deletion of 1st record, middle or last record.

Source: van Welie, 2005 – Wellie.com

19

37

Check – For Each Project
1.  Collect Rqrmnts Quality & Examples Metrics
2.  Collect Examples Issues/Defect
3.  Evaluate Examples Usage
4.  Evaluate Examples Contribution
5.  Analyze Examples Effectiviness
6.  Define Improvement Action Plan

Requirements based on examples - Adoption Plan

© Copyright IBM Corporation 2012. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature
availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business Machines
Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

20

Observational and experimental case study
research in RE:
Methodology and Examples

Roel Wieringa

What is a case study

 A case is a real-world sociotechnical system
– Observational case studies (only observe)
– Technical action research (intervene, using a new
technollogy, and observe)

21

Core message

 You can generalize from a single case study by
–  Observe archictecture of a case;
– Assess architectural similarity between cases and
–  Estimate whether the mechanism in case with similar
architecture, will have similar effects.

 The generalization will be middle-range
– Not all other cases
– Realistic abstractions

Architectures and mechanisms

 Case architecture
– Components
– Capabilities
– Mechanisms

 Mechanisms do not occur in isoolation
– Each mechanism may be understood in isolation
– No universal law of addition of mechanisms
– Assess combined effect case by case

22

Doing a case study

1.  Identify the boundary of the case
– What kind of case? Population
– What internal structure? (Architecture

2.  State your research questions in advance
3.  Decide how to collect data in advance
4.  Decide how to analyze the data in advance
5.  When analyzing:

– Describe architecture and phenomena
– Explain (in terms of mechanisms)
– Generalize (to cases with similar architecture)

Jean-Michel Bruel
João Araújo

RE'2013 44

23

45

Usability based on Examples

Example:
UI0001 – Paging:
The system must present the results grouped in pages with a fixed number of items

and allow the users to move from one page of items to another
It will be provided a direct link to a particular page and links to the next/previous

page that allow stepping through the pages. Also show the total number of items
and use a title to say what kind of items they are.

.

Sketch:

Applicability: Often users need to go through a large list of items. This pattern is applicable
when the items are too numerous to fit on one page. The items are typically ordered and the
users are likely to find their desired item somewhere near the start, for example in
Search Results where this pattern is nearly t always used. Paging is also often used together
with a List Builder, for example in an web-based e-mail application. The number of items is
typically at 10 to 200 items. The 'Items' can be anything such as e-mail headers, names,
photos, phone numbers and so on.

Source: van Welie, 2005 – Wellie.com

  Set of human and material elements composed of
various technologies
◦  Computer, Hydraulic, Electronic,…

  Integrated to provide services to its environment
corresponding to the system finality

  Interacting between themselves and the environment

RE'2013 46

A complex system is very different from a simple
software system

24

  A system
◦  Should manage interactions between parts
◦  Support expected behavior
◦  Handle unexpected ones

RE'2013 47

RE'2013 48

48

The image
cannot be
displayed. Your
computer may
not have enough
memory to open

Requirements
Functional and/or
Behavioural Model

Ground Take Off

Landing Flying

Structural Model

Engine Flying
Command

Brakes Flaps

Performance Model

Data
Acquisition

Equations

Reactions

Other Engineering
Analysis Models

Cost
Model

Security
Model

Business
Model

…

? OK

25

RE'2013 49

After

Before

Moving from Document centric
To Model centric

Generate lot of
writing work

Not adapted to
discuss within a

multi-domain team

RE'2013 50

26

RE'2013 51
51 Master Technologies de l'Internet - 2ième année 51

Same as UML
Modified from UML

New

RE'2013 52

27

RE'2013 53

RE'2013 54

28

  Mapping Modeling concepts
◦  Goal  <<requirement>>
◦  Requirement  <<requirement>> (system)
◦  Expectation  <<requirement>> (user)
◦  Resolutions  <<requirement>> (system or user)
◦  Entity  Block
◦  Operation  activity or Block operation
◦  Environment Agents  Actors
◦  System Agents  Blocks/components
◦  ...

  Relationships
◦  Decomposition

  Or  multiple <<refine>>
  And  composition

◦  Concerns  <<satisfy>>
◦  …

  No direct mapping
◦  Obstacles
◦  Conflicts

RE'2013 55

RE'2013 56

29

RE'2013 57

Conforms	
 to Conforms	
 to

Through	
 Through	

Transformed	
 into

Conforms	
 to Conforms	
 to Conforms	
 to

Conforms	
 to Conforms	
 to Conforms	
 to

Meta	
 -­‐	

metamodel

SysML	

Metamodel ATL	

Metamodel KAOS	

Metamodel

ATL	
 Rules
SysML	
 Model KAOS	
 Model

SysML	
 Log	

Model KAOS	
 Log	
 Model

RE'2013 58

30

RE'2013 59

  KAOS
◦  Goal-oriented modeling language
◦  Special role at Requirements elicitation

  SysML is:
◦  a specific language for complex systems
◦  strongly UML-Based
◦  focusing on analysis
◦  SysML is not:
  a method
  just a UML profile
  sufficient in itself

  Synergy between KAOS and SysML!
◦  Model transformations

RE'2013 60

31

© Copyright MDE Systems 2011 61

Applying Model Driven
Engineering

and
Domain Specific

Languages
 to

Requirements Engineering

Bruce Trask
Angel Roman
MDE Systems

Software
Product

Lines

Scope

Com
m

onality Va
ria

bi
lit

y

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

SPLC - Vol. II, September 02 - 07 2012, Salvador, Brazil
Copyright 2012 ACM 978-1-4503-1095-6/12/09 $15.00.

© Copyright MDE Systems 2011 62

Summary

32

© Copyright MDE Systems 2011 63

Synergy / Holism

Enabling
Technologies and

Approaches

© Copyright MDE Systems 2011 64

Language and Platform

Change

Complexity

TEAM

33

© Copyright MDE Systems 2011 65

Language and Platform – where we are now

Change

Complexity

C
la

ss
ic

 P
ro

du
ct

 L
in

e
A

ss
et

s

© Copyright MDE Systems 2011 66

What’s underneath the problems

•  Language technology has not kept
pace with platform technology1

•  Insufficient linguistic power to tackle
platform, domain and requirement
complexity

•  Lack of tools to deal with increased
complexity

1 Douglas C. Schmidt IEEE Computer Magazine February 2006

34

© Copyright MDE Systems 2011 67

Solution

•  Leverage recent critical innovations to
provide a quantum leap of language
technology and tools to overcome the
complexity gap

© Copyright MDE Systems 2011

Orders of Magnitude

•  1000x more processing power
•  1000x more dynamic memory
•  1000x more disk space
•  1000x more power efficiency
•  1000x smaller
•  15 orders of magnitude

68

35

© Copyright MDE Systems 2011 69

Rote vs. Creative Code

© Copyright MDE Systems 2011 70

Non Software Example “Domain Independent”

36

© Copyright MDE Systems 2011 71

Non Software Example
“Domain Specific”

© Copyright MDE Systems 2011 72

Non Software Example
“Domain Specific”

37

© Copyright MDE Systems 2011 73

Language Workbench

©
 S

eilevel, Inc. A
ll rights reserved

Questions for any of our
tutorial presenters?

